Advertisement

Hydrogeological implications of active tectonics in the Great Artesian Basin, Australia

  • Mike SandifordEmail author
  • Ken Lawrie
  • Ross S. Brodie
Paper

Abstract

Derangement of surface drainage systems across central and eastern Australia testify to subtle tectonic modification of the landscape on the million-year timescale that is relevant to groundwater residence in the Great Artesian Basin (GAB). In the central part of the overlying Lake Eyre Basin, spatial variations in drainage channel form, and lateral offsets in drainage channels, reflect an active north to northwest-trending fault system that correlates with a distinct potentiometric anomaly in the deeper GAB aquifers. There are correlations in both the distribution of seismic activity and drainage form with changes in lithospheric thickness. This suggests that active faulting reflects, in part, stress sourced from sublithospheric mantle flow beneath the GAB. These observations have implications for hydrogeological interpretations and the understanding of groundwater processes, while also providing constraints on water balance studies and studies on the distribution of pressure within GAB aquifers.

Keywords

Tectonics Australia Earthquake Groundwater flow 

Conséquences hydrogéologiques de la tectonique active au sein du Grand Bassin Artésien, Australie

Résumé

Le dérangement des systèmes de drainage de surface dans le centre et l’est de l’Australie témoigne d’une modification tectonique subtile du paysage sur l’échelle de temps d’un million d’années qui est pertinente avec le temps de résidence des eaux souterraines dans le grand bassin artésien (GBA). Dans la partie centrale des formations sédimentaires supérieures du bassin du lac Eyre, les variations spatiales de la forme des canaux de drainage et leurs déplacements latéraux reflètent un système actif de failles du nord au nord-ouest qui est corrélé avec une anomalie de potentiel électrique distincte dans les aquifères les plus profonds du GBA. Il existe des corrélations à la fois dans la distribution de l’activité sismique et la forme de drainage avec des changements dans l’épaisseur lithosphérique. Ceci suggère que la faille active reflète, en partie, les contraintes provenant du flux sous-lithosphérique du manteau sous le GBA. Ces observations ont des répercussions sur les interprétations hydrogéologiques et la compréhension des processus des eaux souterraines, tout en fournissant également des contraintes pour les études de bilan hydrologique et les études sur la répartition de la pression au sein des aquifères du GBA.

Implicancias hidrogeológicas de la tectónica activa en la Great Artesian Basin, Australia

Resumen

Los desajustes de los sistemas de drenaje superficial en Australia central y oriental atestiguan una sutil modificación tectónica del paisaje en la escala de tiempo de un millón de años que es relevante para la residencia de aguas subterráneas en la Great Artesian Basin, Australia (GAB, por sus siglas en inglés). En la parte central de la cuenca del lago Eyre, las variaciones espaciales en la forma del canal de drenaje y las compensaciones laterales en los canales de drenaje, reflejan un sistema activo de fallas con tendencia de norte a noroeste que se correlaciona con una clara anomalía potenciométrica en los acuíferos GAB más profundos. Hay correlaciones tanto en la distribución de la actividad sísmica como en la forma de drenaje con los cambios en el espesor de la litosfera. Esto sugiere que la falla activa refleja, en parte, el estrés proveniente del flujo del manto sublitosférico debajo del GAB. Estas observaciones tienen implicancias para las interpretaciones hidrogeológicas y la comprensión de los procesos de las aguas subterráneas, al mismo tiempo que limitan los estudios de balance hídrico y los estudios sobre la distribución de la presión dentro de los acuíferos GAB.

澳大利亚大自流盆地活动构造的水文地质意义

摘要

澳大利亚中部和东部地表排水系统的错乱证实了大自流盆地(GAB)地下水滞留相关的百万年时间尺度上构造对景观的微小影响。在上覆的Eyre湖盆地的中心,排水通道类别的空间变化和排水通道的侧向偏移反映了活跃的北-西北向断层系统,该系统与GAB深部含水层中的明显电位异常相关。地震活动分布和排水方式都与岩石圈厚度的变化有关。研究表明活动断层反映了部分应力来源于GAB盆地底的次岩石圈地幔流动。这些观测结果对水文地质解释和地下水过程理解有意义,同时也对水平衡和GAB盆地含水层内压力分布的研究提供了约束。

Implicações hidrogeológicas da atividade tectônica na Grande Bacia Artesiana, Austrália

Resumo

O desarranjo dos sistemas de drenagem superficiais na Austrália central e oriental é testemunha da sutil modificação tectônica da paisagem na escala de tempo de um milhão de anos, fato que é relevante para a residência das águas subterrâneas na Grande Bacia Artesiana (GAB). Na parte central da Bacia do Lago Eyre sobreposta, as variações espaciais na forma e os desvios laterais dos canais de drenagem refletem um sistema ativo de falhas de tendência norte-noroeste correlacionado com uma distinta anomalia potenciométrica nos aquíferos mais profundos da GAB. Existem correlações tanto na distribuição da atividade sísmica e quanto na forma da drenagem com mudanças na espessura da litosfera. Isso sugere que a falha ativa reflete, em parte, o estresse proveniente do fluxo do manto sublitosférico sob a GAB. Estas observações têm implicações para interpretações hidrogeológicas e para compreensão dos processos que envolvem água subterrânea, ao mesmo tempo em que fornecem restrições sobre os estudos de balanço hídrico e da distribuição da pressão nos aquíferos da GAB.

Notes

Acknowledgements

We thank Nick Rawlinson for providing his lithospheric thickness map, and Gary Gibson for providing his curated Australian seismic catalogue. We thank Stephen Hostetler, Donna Cathro, Todd Halihan, Carlos Miraldo Ordens and an anonymous reviewer for reviewing an earlier draft of this manuscript.

Funding information

This work forms a contribution to, and was supported in part by, the Geoscience Australia - University of Melbourne Groundwater Geodynamics Program and was funded in part by Geoscience Australia’s Exploring for the Future Programme.

References

  1. Alley NF (1998) Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin. Palaeogeogr Palaeoclimatol Palaeoecol 144:239–263CrossRefGoogle Scholar
  2. Attanayake J, Sandiford D, Schleicher LS, Jones A, Gibson G, Sandiford M (2019) Interacting intraplate fault systems in Australia: the 2012 Thorpdale, Victoria seismic sequences. J Geophys Res Solid Earth 124:4673–4693.  https://doi.org/10.1029/2018JB01694 CrossRefGoogle Scholar
  3. Baisch S, Weidler R, Voros R, Wyborn D, de Graaf L (2006) Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bull Seismol Soc Am 96:2242–2256.  https://doi.org/10.1785/0120050255 CrossRefGoogle Scholar
  4. Braun J, Burbidge DR, Gesto FN, Sandiford M, Gleadow AJW, Kohn BP, Cummins PR (2009) Constraints on the current rate of deformation and surface uplift of the Australian continent from a new seismic database and low-T thermochronological data. Aust J Earth Sci 56:99–110.  https://doi.org/10.1080/08120090802546977 CrossRefGoogle Scholar
  5. Brooke-Barnett R, Flottman T, Paul SK, Busetti S, Hennings P, Reid R, Rosenbaum G (2015) Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland. J Geophys Res Solid Earth 120.  https://doi.org/10.1002/2015JB011964 Google Scholar
  6. Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell, Hoboken, NJ, 273 ppGoogle Scholar
  7. Bureau of Meteorology (2017) Australian hydrological geospatial fabric (geofabric). http://www.bom.gov.au/water/geofabric/download.shtml. Accessed August 2017
  8. Callen RA, Alley NF, Greenwood DR (1995) Lake Eyre Basin. In: Drexel JF, Preiss WV (eds) The Geology of South Australia, vol 2: the Phanerozoic. Bulletin 54, South Australia Geological Survey, Adelaide, AustraliaGoogle Scholar
  9. Celerier J, Sandiford M, Hansen DL, Quigley M (2005) Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics 24.  https://doi.org/10.1029/2004TC001679 CrossRefGoogle Scholar
  10. Clark D, Dentith M, Wyrwoll K-H, Yanchou L, Dent V, Featherstone C (2008) The Hyden fault scarp, Western Australia: paleoseismic evidence for repeated Quaternary displacement in an intracratonic setting. Aust J Earth Sci 55:379–395CrossRefGoogle Scholar
  11. Clark D, Cupper M, Sandiford M, Kiernan K (2011) Style and timing of Late Quaternary faulting on the Lake Edgar Fault, southwest Tasmania, Australia: implications for hazard assessment in intracratonic areas. In: Audemard F, Michetti A, Macalpin J (eds) Geological criteria for evaluating seismicity revisited: 40 years of paleoseismic investigations and the natural record of past earthquakes. Geol Soc Am Spec Pap 479:109–131.  https://doi.org/10.1130/2011.2479(05) CrossRefGoogle Scholar
  12. Coblentz D, Sandiford M, Richardson R, Zhou S, Hillis R (1995) The origins of the Australian stress field. Earth Planet Sci Lett 133:299–309CrossRefGoogle Scholar
  13. Coblentz D, Zhou S, Hillis R, Richardson R, Sandiford M (1998) Topography, plate-boundary forces and the Indo-Australian intraplate stress field. J Geophys Res 103:919–931CrossRefGoogle Scholar
  14. Costelloe JF, Irvine EC, Western AW, Matic V, Walker J, Tyler M (2008) Quantifying near- surface diffuse groundwater discharge along the south-west margin of the Great Artesian Basin. In: Lambert M, Daniell TM, Leonard M (eds) Proceedings of Water Down Under 2008. Engineers Australia, Modbury, Australia, pp 831–840Google Scholar
  15. Crossey L, Priestley S, Shand P, Karlstrom K, Love AJ, Keppel M (2012) Source and origin of western Great Artesian Basin spring water, chap 2. In: Love AJ, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol 3: groundwater discharge of the western Great Artesian Basin, Australia in South Australia and the Northern Territory. National Water Commission, CanberraGoogle Scholar
  16. Czarnota K, Hoggard MJ, White N, Winterbourne J (2013) Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochem Geophys Geosyst 14:634–658.  https://doi.org/10.1029/2012GC004392 CrossRefGoogle Scholar
  17. Flottman T, Brooke-Barnett S, Trubshaw R, Naidu SK, Kirk-Burnnand E, Busetti PK, Paul S, Hennings P (2013) Influence of in-situ stresses on fracture stimulations in the Surat Basin, southeast Queensland, paper SPE 167064 presented at the Unconventional Resources Conference and Exhibition-Asia Pacific, Soc. of Petrol. Eng., Brisbane, Australia, 14 ppGoogle Scholar
  18. Gallagher K, Lambeck K (1989) Subsidence, sedimentation and sea-level changes in the Eromanga Basin, Australia. Basin Res 2:115–131CrossRefGoogle Scholar
  19. Geoscience Australia (2009) Australian bathymetry and topography grid: June 2009. http://www.ga.gov.au/scientific-topics/marine/survey-techniques/bathymetry. Accessed August 2017
  20. Geoscience Australia (2015) Digital datasets from the GAB atlas. http://www.ga.gov.au/scientific-topics/water/groundwater/gab/digital-datasets-from-the-gab-atlas. Accessed August 2017
  21. Gurnis M, Müller RD, Moresi L (1998) Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science 279:1499–1504.  https://doi.org/10.1126/science.279.5356.1499 CrossRefGoogle Scholar
  22. Harbeck-Fardy A, Nanson GC (2014) Environmental character and history of the Lake Eyre Basin, one seventh of the Australian continent. Earth Sci Rev 132:39–66CrossRefGoogle Scholar
  23. Habermehl MA (1980) The Great Artesian Basin, Australia. BMR J Aust Geo Geophys 5:9–38Google Scholar
  24. Habermehl MA (1982) Springs in the Great Artesian Basin, Australia: their origin and nature. Bureau of Mineral Resources, CanberraGoogle Scholar
  25. Habermehl MA (2019) Review: The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol J.  https://doi.org/10.1007/s10040-019-02036-6
  26. Harrington GA, Gardner WP, Smerdon BD, Hendry MJ (2013) Palaeohydrogeological insights from natural tracer profiles in aquitard porewater, Great Artesian Basin, Australia. Water Resour Res 49:4054–4070.  https://doi.org/10.1002/wrcr.20327 CrossRefGoogle Scholar
  27. Harrington G (2014) CConclusions and recommendations. In: Background review: aquifer connectivity within the Great Artesian Basin, and the Surat, Bowen and Galilee basins, chap 10. Commonwealth of Australia, CanberraGoogle Scholar
  28. Hillis RR, Sandiford M, Reynolds SD, Quigley MC (2008) Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australiaʼs ʻpassiveʼ margins: intraplate deformation controlled by plate boundary forces. In: Johnson H, Dore AG, Gatliff RW, Holdsworth R, Lundin ER, Ritchie JD (eds) The nature and origin of compression in passive margins. Geol Soc Lond Spec Publ 306:71–90Google Scholar
  29. Holbrook J, Schumm SA (1999) Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognising subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305:287–306CrossRefGoogle Scholar
  30. Jansen JD, Nanson GC, Cohen TJ, Fujioka T, Fabel D, Larsen JR, Codilean AT, Price DM, Bowman HH, May J, Gliganic LA (2013) Lowland river responses to intraplate tectonism and climate forcing quantified with luminescence and cosmogenic 10Be. Earth Planet Sci Lett 366:49–58CrossRefGoogle Scholar
  31. Kellett JR, Bell JG, Stewart GA, Ransley TR (2012) Regional watertable, chap 6. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, Canberra, AustraliaGoogle Scholar
  32. Kernich AL, Pain CF, Clarke JDA, Fitzpatrick AD (2009) Geomorphology of a dryland fluvial system: the Lower Balonne River, southern Queensland. Aust J Earth Sci 56(suppl):S139–S153.  https://doi.org/10.1080/08120090902871184 CrossRefGoogle Scholar
  33. Krieg GW, Alexander EM, Alley NF (1995) Mesozoic, in Drexel, chap 9. In: Preiss J F, W. V. (eds) The geology of South Australia, vol 2: the Phanerozoic. Bulletin 54, South Australian Geological Survey, Adelaide, AustraliaGoogle Scholar
  34. Lawrie KC, Brodie RS, Tan KP, Gibson D, Magee J, Clarke JDA, Halas L, Gow L, Somerville P, Apps HE, Smith M, Christensen NB, Abraham J, Hostetler S, Brodie RC (2012) BHMAR Project: geological and hydrogeological framework and conceptual model. Record 2012/12, Geocat 73820, Geoscience Australia, Canberra, 585 ppGoogle Scholar
  35. Love AJ, Shand P, Crossey L, Harrington GA, Roussea-Guetin P (2012) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin, Australia in South Australia and the Northern Territory. Report, National Water Commission, CanberraGoogle Scholar
  36. Love D, Wohling D, Fulton W, Rousseau-Gueutin P, De Ritte S (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the Western Great Artesian Basin. National Water Commission, CanberraGoogle Scholar
  37. Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR, Hatano T, Mizuochi Y, Kobayashi H, Ninomiya A, Senior BR, Yasuda H, Ohta T (2009) Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet Sci Lett 287:43–56CrossRefGoogle Scholar
  38. Moya CE, Raiber M, Cox ME (2014) Three-dimensional geological modelling of the Galilee and central Eromanga basins, Australia: new insights into aquifer/aquitard geometry and potential influence of faults on inter-connectivity. J Hydrol: Regional Studies 2:119–139.  https://doi.org/10.1016/j.ejrh.2014.08.007 CrossRefGoogle Scholar
  39. Nanson GC, Knighton AD (1996) Anabranching rivers: their cause, character and classification. Earth Surf Process Landf 21:217–239CrossRefGoogle Scholar
  40. Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177.  https://doi.org/10.1016/j.palaeo.2017.10.024 CrossRefGoogle Scholar
  41. Quigley MC, Clark D, Sandiford M (2010) Tectonic geomorphology of Australia. In: Bishop P, Pillans B (eds) Australian landscapes. Geol Soc Lond Spec Publ 346:243–265CrossRefGoogle Scholar
  42. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed September 2019
  43. Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin, Australia. Bureau of Rural Sciences, CanberraGoogle Scholar
  44. Rajabi M, Tingay M, King R, Heidbach O (2015) Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations. Basin Res 29:662–640.  https://doi.org/10.1111/bre.12175 CrossRefGoogle Scholar
  45. Ransley TR, Radke BM, Kellett JR (2012a) Jurassic–Cretaceous geology, chap 2. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, Adelaide, AustraliaGoogle Scholar
  46. Ransley TR, Radke BM, Kellett JR, Carey H, Bell JG, O’Brien PE (2012b) Hydrogeology of the Great Artesian Basin, chap 5. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, Adelaide, AustraliaGoogle Scholar
  47. Ransley TR, Radke BM, Feitz AJ (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia. http://www.ga.gov.au/scientific-topics/water/groundwater/gab/digital-datasets-from-the-gab-atlas. Accessed November 2017
  48. Rawlinson N, Davies DR, Pilia S (2017) The mechanisms underpinning Cenozoic intraplate volcanism in eastern Australia: insights from seismic tomography and geodynamic modelling. Geophys Res Lett 44:9681–9690CrossRefGoogle Scholar
  49. Sandiford M (2003) Neotectonics of southeastern Australia: linking the Quaternary faulting record with seismicity and in situ stress. In: Hillis RR, Muller D (eds) Evolution and dynamics of the Australian Plate. Geol Soc Aust Spec Publ 22:101–113Google Scholar
  50. Sandiford M (2007) The tilting continent: a new constraint on the dynamic topographic field from Australia. Earth Planet Sci Lett 261:152–163.  https://doi.org/10.1016/j.epsl.2007.06.023 CrossRefGoogle Scholar
  51. Sandiford M, Quigley MC (2009) TOPO-OZ: insights into the various modes of intraplate deformation in the Australian continent. Tectonophysics 474:405–416.  https://doi.org/10.1016/j.tecto.2009.01.028 CrossRefGoogle Scholar
  52. Sandiford M, Wallace M, Coblentz D (2004) Origin of the in situ stress field in southeastern Australia. Basin Res 16:325–338CrossRefGoogle Scholar
  53. Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23:949–960.  https://doi.org/10.1007/s10040-015-1248-z CrossRefGoogle Scholar
  54. Smerdon BD, Rousseau-Gueutin P, Love AJ, Taylor AR, Davies PJ, Habermehl MA (2012) Regional hydrodynamics, chap 7. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, Adelaide, AustraliaGoogle Scholar
  55. Torgersen T, Habermehl MA, Clarke WB (1992) Crustal helium fluxes and heat flow in the Great Artesian Basin, Australia. Chem Geol 102:139–152CrossRefGoogle Scholar
  56. Turnadge C, Peeters L, Smerdon B (2014) Background review: aquifer connectivity in the Great Artesian Basin, chap 5. In: Aquifer connectivity within the Great Artesian Basin, and the Surat, Bowen and Galilee Basins. Commonwealth of Australia, CanberraGoogle Scholar
  57. Waschbush P, Korsch RJ, Beaumont C (2009) Geodynamic modelling of aspects of the Bowen, Gunnedah, Surat and Eromanga basins from the perspective of convergent margin processes. Aust J Earth Sci 56:309–334CrossRefGoogle Scholar
  58. Wopfner H, Callen R, Wayne KH (1974) The Lower Tertiary Eyre Formation of the southwestern Great Artesian Basin. J Geol Soc Aust 21:17–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  2. 2.Groundwater Branch, Environmental Geoscience DivisionGeoscience AustraliaCanberraAustralia

Personalised recommendations