Advertisement

Reconciling contradictory environmental tracer ages in multi-tracer studies to characterize the aquifer and quantify deep groundwater flow: an example from the Hutton Sandstone, Great Artesian Basin, Australia

  • Axel SuckowEmail author
  • Alec Deslandes
  • Matthias Raiber
  • Andrew R. Taylor
  • Phil Davies
  • Christoph Gerber
  • Fred Leaney
Paper
  • 32 Downloads

Abstract

The effective deep recharge to the Hutton Sandstone, a major confined aquifer of the Surat Basin, Australia, has been quantified for the first time with the aid of environmental tracers. A factor of ten discrepancy was found when deriving groundwater flow velocities from applying the environmental tracers 14C and 36Cl. It was possible to reconcile these contradictory results describing the Hutton Sandstone as a dual porosity system, in which a significant part of the tracer is not only lost by radioactive decay, but also by diffusion into stagnant zones of the aquifer. The conceptual and mathematical description of this process allowed for quantification of the effective deep recharge into this aquifer. The resulting recharge value is only a small percentage (~3%) of earlier estimates using chloride mass balance. The chloride mass balance probably gives a correct shallow infiltration rate but most of that infiltration is diverted to springs and surface water nearby (“rejected recharge”). Only a small fraction of recharge finally reaches the deeper system. These results are significant for water resource quantification from groundwater in deep confined systems. The presented dual porosity reconceptualization is likely applicable to a significant number of earlier studies that apply environmental tracers to old groundwater, and indicates that those original results may actually give too small values for groundwater velocity and too large estimates of recharge. This reconceptualization may be particularly valid for systems that include old groundwater and that have limited spatial and temporal coverage of tracer data such as the Great Artesian Basin.

Keywords

Environmental tracer Dual porosity Groundwater recharge Confined aquifer Australia 

Widersprüchliche Wasseralter von Umwelttracern charakterisieren die Eigenschaften eines gespannten Aquifer Systems und quantifizieren effektive tiefe Grundwasserneubildung am Beispiel des Hutton Sandstein, Großes Artesisches Becken, Australien

Zusammenfassung

Die Grundwasserneubildung, die den tiefen gespannten Bereich des Hutton Sandstein erreicht, wurde zum ersten Mal mittels Umwelttracern bilanziert. Der Hutton Sandstein ist ein wichtiger gespannter Aquifer im Surat Becken in Australien, ein Neubildungsgebiet des Großen Artesischen Beckens. Zwischen den mittels 14C und 36Cl bestimmten Grundwasser-Fließgeschwindigkeiten wurde ein Faktor zehn Unterschied gefunden. Dieser Widerspruch konnte aufgelöst werden, indem der Hutton Sandstein als ein Aquifer System mit Doppel-Porosität beschrieben wurde, in dem ein Großteil der Tracer nicht nur durch radioaktiven Zerfall abnahm, sondern vor allem durch Diffusion in die stagnierenden Bereiche des Aquifers. Die konzeptionelle und mathematische Beschreibung dieses Prozesses ermöglichte es, die tiefe Grundwasserneubildung zu bilanzieren. Der Wert, der sich hieraus für die Grundwasserneubildung ergab, ist nur ein kleiner Prozentsatz (⁓3%) früherer Abschätzungen nach der Chlorid-Massenbilanz. Höchstwahrscheinlich gibt die Chlorid-Massenbilanz einen korrekten Wert für die flache Infiltration, aber ein großer Teil dieser Neubildung wird nahegelegenen Quellen und Oberflächengewässern zugeführt („rejected recharge“). Nur ein kleiner Teil trägt zur Neubildung im tiefen gespannten System bei. Diese Ergebnisse sind von großer Bedeutung für die Wasserbilanz und Nutzung von tiefen, gespannten Grundwassersystemen. Die angewendete Beschreibung mit Doppel-Porosität trifft vermutlich auf eine große Anzahl älterer Studien in tiefen Grundwassersystemen zu und bedeutet, dass die Fließgeschwindigkeiten in diesen Systemen vermutlich teilweise unterschätzt und die Neubildung überschätzt wurde. Die neue Bilanzierung ist speziell von Bedeutung für alte Grundwasser mit begrenzter zeitlicher und räumlicher Abdeckung mit Tracer-Daten, wie z.B. das Große Artesische Becken in Australien.

Réconcilier les âges contradictoires issus de traceurs environnementaux dans les études multi-traceurs pour caractériser les aquifères et quantifier les écoulements d’eaux souterraines profonds: un exemple des Grès de Hutton, Grand Bassin Artésien, Australie

Résumé

La recharge efficace profonde des Grès de Hutton, un aquifère captif de grande importance dans le bassin du Surat, en Australie, a été quantifiée pour la première fois à l’aide des traceurs environnementaux. Une différence d’un facteur dix a été trouvée pour les vitesses déduites des flux des eaux souterraines en utilisant les traceurs environnementaux 14C et 36Cl. Il a été possible de réconcilier ces résultats contradictoires décrivant les Grès de Hutton comme un système à double porosité, dans lequel une part significative du traceur n’est pas seulement perdue par décroissance radioactive mais également par diffusion dans les zones stagnantes de l’aquifère. La description conceptuelle et mathématique de ce processus a permis de quantifier la recharge effective profonde dans cet aquifère. La valeur de recharge calculée correspond seulement à un faible pourcentage (~3%) des estimations précédentes réalisées par calcul de bilan de masse du chlorure. Le bilan de masse du chlorure donne sans doute une estimation correcte du taux d’infiltration à faible profondeur mais une grande part de cette recharge s’écoule vers les sources et les rivières proches (« recharge rejetée »). Seule une faible part de la recharge atteint finalement la partie profonde de l’aquifère. Ces résultats sont importants pour la quantification des ressources en eau souterraine des systèmes profonds captifs. Cette nouvelle conceptualisation de la double porosité est sans doute applicable à un grand nombre d’études antérieures ayant utilisées des traceurs environnementaux pour les eaux anciennes, et indiquent que les résultats obtenus alors donnent de trop faibles valeurs de vitesses d’eau souterraine et une estimation de la recharge trop élevée. Cette re-conceptualisation peut être particulièrement valide pour des systèmes avec des eaux anciennes et ayant une extension spatiale et temporelle des données de traceurs limitée, comme c’est le cas du Grand Bassin Artésien.

Arreglos de edades contradictorias de trazadores ambientales en estudios de múltiples trazadores para caracterizar el acuífero y cuantificar el flujo de agua subterránea profunda: un ejemplo de la Hutton Sandstone, Great Artesian Basin, Australia

Resumen

La recarga profunda efectiva de la Hutton Sandstone, un importante acuífero confinado de la cuenca de Surat, Australia, ha sido cuantificada por primera vez con la ayuda de trazadores ambientales. Se encontró un factor de discrepancia de diez cuando se derivaron las velocidades de flujo del agua subterránea a partir de la aplicación de los trazadores ambientales 14C and 36Cl. Fue posible un arreglo de estos resultados contradictorios describiendo la Hutton Sandstone como un sistema de porosidad dual, en el cual una parte significativa del trazador no sólo se pierde por la descomposición radioactiva, sino también por la difusión en zonas estancadas del acuífero. La descripción conceptual y matemática de este proceso permitió cuantificar la recarga profunda efectiva en este acuífero. El valor de recarga resultante es sólo un pequeño porcentaje (~3%) de las estimaciones anteriores que utilizan el balance de masa de cloruro. El balance de masa de cloruro probablemente da una tasa correcta de infiltración superficial, pero la mayor parte de esa infiltración es desviada a manantiales y aguas superficiales cercanas (“recarga rechazada”). Sólo una pequeña fracción de la recarga llega finalmente al sistema más profundo. Estos resultados son significativos para la cuantificación de recursos hídricos a partir de aguas subterráneas en sistemas confinados profundos. La reconceptualización de la porosidad dual presentada es probablemente aplicable a un número significativo de estudios anteriores que aplican trazadores ambientales a aguas subterráneas viejas, e indica que esos resultados originales pueden en realidad dar valores demasiado pequeños para la velocidad del agua subterránea y estimaciones de recarga demasiado grandes. Esta reconceptualización puede ser particularmente válida para sistemas que incluyen aguas subterráneas antiguas y que tienen una cobertura espacial y temporal limitada de datos de trazadores, como es la Great Artesian Basin.

多示踪研究中解释相互矛盾的环境示踪剂年龄以表征含水层和量化深部地下水流:以澳大利亚大自流盆地Hutton砂岩为例

摘要

澳大利亚Surat盆地主要承压含水层Hutton砂岩的有效深部补给量在借助环境示踪剂后首次进行了量化。当采用环境示踪剂14C和36Cl推算地下水流速时,发现有十倍的差异。将Hutton砂岩描述为双重孔隙系统,其中大部分示踪剂不仅会因放射性衰变而衰减,而且还会扩散到含水层的滞止区,有可能解释矛盾的原因。该过程的概念性和数学描述可以量化该含水层的有效深部补给量。由此产生的补给量只是先前使用氯化物质量平衡估算的一小部分(~3%)。氯化物质量平衡一般能正确估算浅部入渗率,但大部分入渗运移到附近的泉水和地表水(“溢流补给”)。只有一小部分补给最终到达更深部含水层。这些结果对于深层地下水承压系统的水资源量化具有重要意义。所提出的双重孔隙度重新概念化可能适用于先前将环境示踪剂应用于古地下水的大量研究,也表明原始结果实际上过低估计地下水速度而且过高估计补给估计值。这种重新概念化对于包含古地下水和示踪数据展示的有限时空覆盖范围的系统(例如大自流盆地)可能特别有用。

Reconciliando as idades contraditórias do traçador ambiental em estudos com múltiplos traçadores para caracterizar o aquífero e quantificar o fluxo profundo de águas subterrâneas: um exemplo do Arenito Hutton, Grande Bacia Artesiana, Austrália

Resumo

A efetiva recarga profunda do Arenito Hutton, um dos principais aquíferos confinados da Bacia de Surat, na Austrália, foi quantificada pela primeira vez com o auxílio de traçadores ambientais. Um fator de dez discrepância foi encontrado ao derivar as velocidades de fluxo das águas subterrâneas da aplicação dos traçadores ambientais 14C e 36Cl. Foi possível conciliar esses resultados contraditórios, descrevendo o Arenito Hutton como um sistema de porosidade dupla, em que uma parte significativa do traçador não é apenas perdida pelo decaimento radioativo, mas também pela difusão em zonas estagnadas do aquífero. A descrição conceitual e matemática desse processo permitiu quantificar a recarga efetiva profunda nesse aquífero. O valor de recarga resultante é apenas uma pequena porcentagem (~ 3%) das estimativas anteriores usando o balanço de massa de cloreto. O balanço de massa de cloreto provavelmente fornece uma taxa de infiltração superficial correta, mas a maior parte dessa infiltração é desviada para nascentes e águas superficiais próximas (“recarga rejeitada”). Apenas uma pequena fração de recarga finalmente atinge o sistema mais profundo. Estes resultados são significativos para quantificação de recursos hídricos a partir de águas subterrâneas em sistemas confinados profundos. A reconceituação de porosidade dupla apresentada é provavelmente aplicável a um número significativo de estudos anteriores que aplicam traçadores ambientais a águas subterrâneas antigas e indica que esses resultados originais podem realmente fornecer valores muito pequenos para a velocidade das águas subterrâneas e estimativas muito grandes de recarga. Essa reconceituação pode ser particularmente válida para sistemas que incluem águas subterrâneas antigas e que têm cobertura espacial e temporal limitada de dados de traçadores, como a Grande Bacia Artesiana.

Notes

Acknowledgments

GISERA is a collaboration between CSIRO, Commonwealth and state governments and industry established to undertake publicly reported independent research. We thank Steve Flook from the Office of Groundwater Impact Assessment (OGIA) for help during the first field trip. We thank Steve Clohessy, OGIA (now at DWWA) for giving us access to his unpublished tracer data and Andrew Feitz from Geoscience Australia for providing access to his environmental tracer dataset during an early state of this project while it was not yet published (Feitz et al. 2014). We acknowledge the help of the CSG companies—Origin, QGC and Santos—during sampling. Also, the support of numerous farmers is acknowledged, for giving us access to their land and guiding us to their wells. We appreciate the reviews by Peter Hairsine, Kate Holland, Cornelia Wilske and Punjehl Crane for the CSIRO-internal review and the guest editor of HJ as well as two anonymous reviewers who all made very constructive comments and improved the quality of the paper.

Funding information

This manuscript was supported by the Gas Industry Social and Environmental Research Alliance (GISERA).

Supplementary material

10040_2019_2042_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1195 kb)

References

  1. Aggarwal PK, Araguas-Araguas L, Choudhry M, van Duren M, Froehlich K (2014) Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater 52:20–24CrossRefGoogle Scholar
  2. Aggarwal PK, Matsumoto T, Sturchio NC, Chang HK, Gastmans D, Araguas-Araguas LJ, Jiang W, Lu Z-T, Mueller P, Yokochi R, Purtschert R, Torgersen T (2015) Continental degassing of 4He by surficial discharge of deep groundwater. Nat Geosci 8:35–39CrossRefGoogle Scholar
  3. Alvarado C, Antonio J, Purtschert R, Barbecot F, Chabault C, Rüedi J, Schneider V, Aeschbach-Hertig W, Kipfer R, Loosli H (2007) Constraining the age distribution of highly mixed groundwater using 39Ar: a multiple environmental tracer (3H/3He, 85Kr, 39Ar and 14C) study in the semi-confined Fontainebleau Sands aquifer (France). Water Resour Res 43:W03427Google Scholar
  4. APLNG (2016) Australia Pacific LNG Upstream 2015-2016 groundwater assessment report. https://www.aplng.com.au/content/dam/aplng/compliance/management-plans/2015-2016_Groundwater_Assessment.pdf. Accessed Sept 2019
  5. Barrows TT, Stone JO, Fifield LK, Cresswell RG (2002) The timing of the Last Glacial Maximum in Australia. Quat Sci Rev 21:159–173CrossRefGoogle Scholar
  6. Bethke CM, Johnson TM (2002) Paradox of groundwater age. Geology 30:107–110CrossRefGoogle Scholar
  7. Bianchi V, Pistellato D, Job A, Esterle J (2019) Regional geology of the Hutton Sandstone. AANLEC 07-1116-0294. https://anlecrd.com.au/wp-content/uploads/2017/12/7-116-0294-Final-Report_track_changes_accepted-Web.pdf. Accessed Sept 2019
  8. Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25:58–62CrossRefGoogle Scholar
  9. Carrera-Hernández JJ, Smerdon BD, Mendoza CA (2012) Estimating groundwater recharge through unsaturated flow modelling: sensitivity to boundary conditions and vertical discretization. J Hydrol 452–453:90–101CrossRefGoogle Scholar
  10. Cartwright I, Cendón D, Currell M, Meredith K (2017) A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol 555:797–811CrossRefGoogle Scholar
  11. Conard NJ, Elmore D, Kubik PW, Gove HE, Tubbs LE, Chrunyk BA, Wahlen M (1986) The chemical preparation of AgCl for measuring 36Cl in polar ice with accelerator mass spectrometry. Radiocarbon 28:509–515CrossRefGoogle Scholar
  12. Cook PG, Herczeg AL (1999) Environmental tracers in subsurface hydrology. Kluwer, BostonGoogle Scholar
  13. Davidson MR, Airey PL (1982) The effect of dispersion on the establishment of a paleoclimatic record from groundwater. J Hydrol 58:131–147CrossRefGoogle Scholar
  14. Engdahl NB, McCallum JL, Massoudieh A (2016) Transient age distributions in subsurface hydrologic systems. J Hydrol 543(part A):88–100CrossRefGoogle Scholar
  15. Fallon SJ, Fifield LK, Chappell JM (2010) The next chapter in radiocarbon dating at the Australian National University: status report on the single stage AMS. Nucl Instrum Methods Phys Res, Sect B 268:898–901CrossRefGoogle Scholar
  16. Feitz A, Ransley T, Hodgkinson J, Preda M, Dunsmore R, McKillop J, Spulak R, Dixon O, Kuske T, Draper J (2014) GA-GSQ Hydrochemistry dataset (2009–2011). Geoscience Australia, CanberraGoogle Scholar
  17. Fifield LK, Tims SG, Fujioka T, Hoo WT, Everett SE (2010) Accelerator mass spectrometry with the 14UD accelerator at the Australian National University. Nucl Instrum Methods Phys Res, Sect B 268:858–862CrossRefGoogle Scholar
  18. Guiton S, Kieft R, Churchill J, Sheerin C (2015) Characterising the Hutton Sandstone in the Northeastern Surat Basin. AAPG Asia Pacific Region, Geoscience Technology Workshop, Opportunities in Coal Bed Methane in the Asia Pacific. AAPG, Brisbane, AustraliaGoogle Scholar
  19. Herczeg AL (2008) Background report on the Great Artesian Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Canberra, Australia, 18 ppGoogle Scholar
  20. Hodgkinson J, Hortle A, McKillop M (2010) The application of hydrodynamic analysis in the assessment of regional aquifers for carbon geostorage: preliminary results for the Surat Basin, Queensland. APPEA J 50(1):445–462CrossRefGoogle Scholar
  21. IAEA (19920 Isotopes of noble gases as tracers in environmental studies. IAEA, ViennaGoogle Scholar
  22. IAEA (2006) Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, ViennaGoogle Scholar
  23. IAEA (2013) Isotope methods for dating old groundwater. International Atomic Energy Agency, ViennaGoogle Scholar
  24. Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJCrossRefGoogle Scholar
  25. Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR, Hatano T, Mizuochi Y, Kobayashi H, Ninomiya A, Senior BR, Yasuda H, Ohta T (2009) Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet Sci Lett 287:43–56CrossRefGoogle Scholar
  26. Maloszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rocks with a porous matrix. J Hydrol 79:333–358CrossRefGoogle Scholar
  27. Maloszewski P, Zuber A (1989) Mathematical models for interpreting tracer experiments in fissured aquifers. In: Isotope techniques in the study of the hydrology of fractured and fissured rocks, Vienna, 17–21 November 1986, IAEA, Vienna, pp 287–301Google Scholar
  28. Maloszewski P, Zuber A (1990) Mathematical modeling of tracer behavior in short-term experiments in fissured rocks. Water Resour Res 26:1517–1528CrossRefGoogle Scholar
  29. Maloszewski P, Zuber A (1991) Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27:1937–1945CrossRefGoogle Scholar
  30. Maloszewski P, Zuber A (1993) Tracer experiments in fractured rocks: matrix diffusion and the validity of models. Water Resour Res 29:2723–2735CrossRefGoogle Scholar
  31. McCallum JL, Cook PG, Simmons CT (2015) Limitations of the use of environmental tracers to infer groundwater age. Groundwater 53:56–70CrossRefGoogle Scholar
  32. McCallum JL, Cook PG, Dogramaci S, Purtschert R, Simmons CT, Burk L (2017) Identifying modern and historic recharge events from tracer-derived groundwater age distributions. Water Resour Res 53:1039–1056CrossRefGoogle Scholar
  33. Morgenstern U, Taylor CB (2009) Ultra low-level tritium measurement using electrolytic enrichment and LSC. Isot Environ Health Stud 45:96–117CrossRefGoogle Scholar
  34. Motyka J, Witczak S, Zuber A (1994) Migration of lignosulphonates in a karstic-fractured-porous aquifer-history and prognosis for a Zn-Pb mine, Pornorzany, southern Poland. Environ Geol 24:144–149CrossRefGoogle Scholar
  35. OGIA DNRM (2016) Underground water impact report for the Surat Cumulative Management Area. Department of Natural Resources and Mines, Office of Groundwater Impact Assessment, BrisbaneGoogle Scholar
  36. Phillips FM (2013) Chlorine-36 dating of old groundwater. In: Suckow A, Aggarwal PK, Araguas-Araguas LJ (eds) Isotope methods for dating old groundwater. International Atomic Energy Agency, ViennaGoogle Scholar
  37. Purtschert R, Yokochi R, Sturchio NC (2013) 81Kr dating of old groundwater. In: Suckow A, Aggarwal PK, Araguas-Araguas LJ (eds) Isotope methods for dating old groundwater. International Atomic Energy Agency, ViennaGoogle Scholar
  38. QWC (2012) Underground water impact report for the Surat Cumulative Management Area. Queensland Water Commission, BrisbaneGoogle Scholar
  39. Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer Great Artesian Basin. Bureau of Rural Sciences, Australia, CanberraGoogle Scholar
  40. Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological atlas of the Great Artesian Basin, 1st edn. scale 1:10000000. Geoscience Australia, CanberraGoogle Scholar
  41. Sanford WE (1997) Correcting for diffusion in carbon-14 dating of groundwater. Groundwater 35:357–361CrossRefGoogle Scholar
  42. Sanford WE, Buapeng S (1996) Assessment of a groundwater flow model of the Bangkok Basin, Thailand, using Carbon-14-based ages and paleohydrology. Hydrogeol J 4:26–40CrossRefGoogle Scholar
  43. Siade A, Prommer H, Suckow A, Raiber M (2018) Using numerical groundwater modelling to constrain flow rates and flow paths in the Surat Basin through environmental tracer data. CSIRO, PerthGoogle Scholar
  44. Smerdon BD, Davies PJ (2012) Regional water budget. In: Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, CanberraGoogle Scholar
  45. Smerdon BD, Ransley TR (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO, CanberraGoogle Scholar
  46. Smerdon BD, Ransley TR, Radke BM, Kellett JR (2012) Water resource assessment for the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Resource Assessment. CSIRO, CanberraGoogle Scholar
  47. Suckow A (2007) LabData: a database and laboratory management system for isotope hydrology laboratories. Water Environ News 22:10Google Scholar
  48. Suckow A (2014) The age of groundwater: definitions, models and why we do not need this term. Appl Geochem 50:222–230CrossRefGoogle Scholar
  49. Suckow A, Dumke I (2001) A database system for geochemical, isotope hydrological, and geochronological laboratories. Radiocarbon 43:325–337CrossRefGoogle Scholar
  50. Suckow A, Taylor AR, Davies P, Leaney FW (2016) Geochemical baseline monitoring. Final report, CSIRO, CanberraGoogle Scholar
  51. Suckow A, Raiber M, Deslandes A, Gerber C (2018) Constraining conceptual groundwater models for the Hutton and Precipice aquifers in the Surat Basin through tracer data. CSIRO, Adelaide, AustraliaGoogle Scholar
  52. Sudicky EA, Frind EO (1981) Carbon 14 dating of groundwater in confined aquifers: implications of aquitard diffusion. Water Resour Res 17:1060–1064CrossRefGoogle Scholar
  53. Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour Res 18:1634–1642CrossRefGoogle Scholar
  54. Toews MW, Daughney CJ, Cornaton FJ, Morgenstern U, Evison RD, Jackson BM, Petrus K, Mzila D (2016) Numerical simulation of transient groundwater age distributions assisting land and water management in the Middle Wairarapa Valley, New Zealand. Water Resour Res 52:9430–9451CrossRefGoogle Scholar
  55. Zuber A, Różański K, Kania J, Purtschert R (2011) On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeol J 19:53–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Axel Suckow
    • 1
    Email author
  • Alec Deslandes
    • 1
  • Matthias Raiber
    • 1
  • Andrew R. Taylor
    • 1
  • Phil Davies
    • 1
  • Christoph Gerber
    • 1
  • Fred Leaney
    • 1
  1. 1.CSIRO Land and WaterUrrbraeAustralia

Personalised recommendations