Advertisement

A persistent local thermal anomaly in the Ahorn gneiss recharged by glacier melt water (Austria)

  • Claus-Dieter HeldmannEmail author
  • Ingo Sass
  • Rafael Schäffer
Report

Abstract

In the unlined Tuxbach water transfer tunnel, running between Hintertux (1,500 m asl) and the Schlegeis Reservoir (Austria), a local geothermal anomaly with temperatures up to 14.6 °C exists. These temperatures are around 3 °C higher than expected, considering the tunnel’s shallow depth, together with its surrounding alpine environment and regional heat flow. This is especially noticeable because the temperatures have remained stable since the tunnel’s construction in 1969, although the tunnel is generally cooling the surrounding rock massive. The objective of this investigation is to explain the origin of the anomaly with hydrogeological methods and to evaluate the hydrogeological properties of the gneisses exposed in the tunnel. The anomaly is caused by the high hydraulic conductivity (~2.5∙10−5 m s−1) within a narrow shear-zone core, part of the Tux Shear Zones in the Ahorn Gneiss Core. The zone triggers fast groundwater transport over 1.5 km from both sides towards the tunnel. One reason is that the morphology provides thicker overburden with growing distance from the tunnel and therefore higher temperatures on the same horizontal level in the directions of the fault plane. The second explanation is that the narrowness of the shear zone permits effective heat transfer similar to a heat exchanger. No hydrothermal water share is recognizable; instead, mainly cold glacial melt water and snow contribute to the section of the anomaly and all other runouts of the tunnel. Factually based results show the disproportionately high contribution of snow and glaciers to the groundwater recharge in this alpine hard-rock aquifer.

Keywords

Crystalline aquifer Stable isotopes Fault permeability Climate change Austria 

Une anomalie thermique locale et permanente dans les gneiss d’Ahorn, réalimentés par l’eau de fonte de glacier (Autriche)

Résumé

Dans le tunnel à parois nues de Tuxbach, qui achemine l’eau depuis Hintertux (alt. 1,500 m) vers le réservoir de Schlegeis (Autriche), une anomalie géothermique ponctuelle est observée avec des températures atteignant 14.6 °C. Ces températures sont supérieures d’environ 3 °C par rapport à celles attendues, considérant la faible profondeur du tunnel, et au vu de l’environnement alpin et du flux géothermique régional. Cela est particulièrement marquant car les températures sont restées stables depuis la construction du tunnel en 1969, alors même que le tunnel contribue généralement à refroidir le massif rocheux environnant. L’objectif des présentes investigations est d’expliquer l’origine de l’anomalie par des méthodes hydrogéologiques, et d’évaluer les propriétés hydrogéologiques des gneiss affleurant dans le tunnel. Cette anomalie est causée par la conductivité hydraulique élevée (~2.5∙10−5 m s−1) au cœur d’une étroite zone de cisaillement, appartenant à la Zone de Cisaillement de Tux dans les Gneiss d’Ahorn. Cette zone génère un transport rapide des eaux souterraines sur près de 1,5 km, convergeant de part et d’autre vers le tunnel. L’une des raisons est que la morphologie produit une couverture d’épaisseur croissante avec la distance au tunnel, et par conséquent des températures plus élevées sur un même plan horizontal dans les directions du plan de faille. La seconde explication est que l’étroitesse de la zone de cisaillement permet un transfert de chaleur effectif comparable à celui d’un échangeur de chaleur. Aucune fraction d’eau hydrothermale n’est. identifiée, et ce sont au contraire principalement les eaux de fonte du glacier et de la neige qui contribuent sur cette section de l’anomalie, et sur les autres écoulements du tunnel. Ces résultats factuels montrent la contribution disproportionnellement élevée de la neige et des glaciers à la réalimentation des eaux souterraines dans cet aquifère de socle en contexte alpin.

Una anomalía térmica local persistente en el gneis de Ahorn recargada por el agua de deshielo de los glaciares (Austria)

Resumen

En el túnel de transferencia de agua no revestido de Tuxbach, que discurre entre Hintertux (1,500 m s.n.m.) y el embalse de Schlegeis (Austria), existe una anomalía geotérmica local con temperaturas de hasta 14.6 °C. Estas temperaturas son alrededor de 3 °C más altas de lo esperado, teniendo en cuenta la poca profundidad del túnel, junto con el entorno alpino circundante y el flujo de calor regional. Esto es especialmente notable porque las temperaturas han permanecido estables desde la construcción del túnel en 1969, aunque el túnel generalmente está enfriando la roca circundante. El objetivo de esta investigación es explicar el origen de la anomalía con métodos hidrogeológicos y evaluar las propiedades hidrogeológicas de los gneisses expuestos en el túnel. La anomalía es causada por la alta conductividad hidráulica (~2.5∙10−5 m s−1) dentro de un núcleo de zona de corte estrecho, parte de las Zonas de Corte Tux en el Núcleo Ahorn Gneiss. La zona desencadena un rápido transporte de agua subterránea a lo largo de 1.5 km desde ambos lados hacia el túnel. Una de las razones es que la morfología proporciona una sobrecarga más gruesa al aumentar la distancia desde el túnel y, por lo tanto, temperaturas más altas en el mismo nivel horizontal en las direcciones del plano de la falla. La segunda explicación es que la estrechez de la zona de corte permite una transferencia de calor efectiva similar a la de un intercambiador de calor. No se reconoce ninguna proporción de agua hidrotermal; en cambio, el agua de deshielo glaciar fría y la nieve contribuyen a la sección de la anomalía y a todos los demás desbordamientos del túnel. Los resultados basados en hechos muestran la contribución desproporcionadamente alta de la nieve y los glaciares a la recarga de aguas subterráneas en este acuífero alpino de roca dura.

奥地利冰川融水补给的片麻岩中持续的局部热异常

摘要

无衬砌的Tuxbach输水隧道,在输水至Hintertux(1,500 m asl)和Schlegeis Reservoir(奥地利)之间时,存在一个温度高达14.6°C的局部地热异常。考虑到隧道的浅层深度,以及周围的高山环境和区域热流,隧道中温度比预期高约3 °C。自1969年隧道建设以来,尽管隧道通常会对周围的岩石进行大规模冷却,温度却一直保持稳定,这种地温异常尤其引人注意。这项研究的目的是用水文地质学方法解释异常的起源,并评估暴露在隧道中的片麻岩的水文地质特性。异常是由于狭窄的剪切带核的高水力传导率(~2.5∙10−5 m s−1)引起的,该核隶属于Ahorn片麻岩核中Tux剪切带。该区域从两侧向隧道引发超过1.5公里的快速地下水运输。一个原因是形态提供了随隧道距离增加的较厚覆盖层,因此在断层面方向上的相同水平面上的温度较高。第二种解释是剪切区域的狭窄性允许类似于热交换器的有效传热。没有发现水热交换;相反,主要的冷冰川融化的水和雪有助于异常形成以及隧道内以其他形式流动。基于事实的结果显示,高山硬质岩含水层中雪和冰川对地下水补给的贡献比例较高。

Uma anomalia termal persistente no gnaisse de Ahorn recarregado por água de degelo glacial (Áustria)

Resumo

Uma anomalia geotermal local com temperaturas de até 14.6 °C existe no túnel não revestido de adução de água de Tuxbach, que se extende entre Hintertux (1500 metros acima do nível do mar) e o reservatório de Schlegeis (Áustria). Tais temperaturas são aproximadamente 3 °C acima do esperado, considerando a baixa profundidade do túnel além do ambiente alpino no entorno e fluxo de calor regional. Isso é especialmente notável porque as temperaturas têm se mantido estáveis desde a construção do túnel em 1969, apesar do túnel estar, de modo geral, resfriando o maciço rochoso de seu entorno. O objetivo deste estudo é explicar a origem da anomalia utilizando métodos hidrogeológicos e avaliar as propriedades hidrogeológicas do gnaisse exposto no túnel. A anomalia é causada por alta condutividade hidráulica (~2.5∙10−5 m s−1) através de uma estreita zona de cisalhamento, parte das Zonas de Cisalhamento de Tux no Núlceo do Gnaisse de Ahorn. A zona aciona rápido transporte de águas subterrâneas através de 1.5 km a partir de ambos os lados em direção ao túnel. Um motivo é que a morfologia propicia um recobrimento litológico inconsolidado mais espesso com o aumento da distância a partir do túnel e portanto temperaturas mais altas no mesmo nível horizontal nas direções do plano de falha. Uma segunda explicação é que a natureza estreita ta zona de cisalhamento permite tranferência de calor de maneira eficiente, similar a um trocador de calor. Não foram identificadas águas hidrotermais, em vez disso, águas frias de degelo de neve e glaciares contribuem para a seção da anomalia e a todos os demais desalinhamentos do túnel. Resultados factuais mostram a contribuição desproporcionalmente alta da neve e glaciares para a recarga das águas subterrâneas nesse aquífero fraturado alpino.

Notes

Acknowledgements

The authors gratefully acknowledge the members of the Verbund AG Heinz Nyvelt, Andreas Blauhut and their colleagues, for the information and for their help during the field study. We also thank Rainer Seehaus and Christoph Drefke for their field support and we appreciate the helpful review comments by two anonymous reviewers. Sulphur isotope composition was analysed by the team of the isotope laboratory of the University Tübingen, Germany.

Funding information

This study was funded by the NaturPur Institute.

Supplementary material

10040_2019_2034_MOESM1_ESM.pdf (123 kb)
ESM 1 (PDF 122 kb)

References

  1. Abermann J, Kuhn M, Lambrecht A, Hartl L (2012) Gletscher in Tirol, ihre Verteilung und jüngsten Veränderungen, Kapitel 3 [Glaciers in Tyrol, their distribution and recent changes, chapter 3]. Alpine Forschungsstelle Obergurgl Band 3:49Google Scholar
  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35(9):2779–2792CrossRefGoogle Scholar
  3. ANIP (Austrian Network of Isotopes in Precipitation) (2015) Österreichisches Netzwerk für Isotopen (18O, 2H, 3H) in Niederschlägen und Oberflächengewässern [Austrian Network for Isotopes (18O, 2H, 3H) in Precipitation and Surface Waters]. Lebensministerium, Ämter d. Landesregierungen, AIT und Umweltbundesamt, ViennaGoogle Scholar
  4. Arnórsson S (2000) Isotopic and chemical techniques in geothermal exploration, development and use. International Atomic Energy Agency, Vienna, pp 109–111Google Scholar
  5. Baietto A, Cadoppi P, Martinotti G, Perello P, Perrochet P, Vuataz FD (2008) Assessment of thermal circulations in strike-slip fault systems: the Terme di Valdieri case (Italian western Alps). Geol Soc Lond Spec Publ 299(1):317–339.  https://doi.org/10.1144/SP299.19 CrossRefGoogle Scholar
  6. Barnes JD, Selverstone J, Sharp ZD (2004) Interactions between serpentinite devolatilization, metasomatism and strike-slip strain localization during deep-crustal shearing in the eastern Alps. J Metamorph Geol 22(4):283–300CrossRefGoogle Scholar
  7. Bates B (2009) Climate change and water: IPCC technical paper VI. World Health Organization, GenevaGoogle Scholar
  8. Bertotti G, Ter Voorde M (1994) Thermal effects of normal faulting during rifted basin formation, 2: the Lugano-Val Grande normal fault and the role of pre-existing thermal anomalies. Tectonophysics 240(1–4):145–157CrossRefGoogle Scholar
  9. Blanc P, Schädler B (2014) Water in Switzerland: an overview. Report, Swiss Hydrological Commission, Bern, SwitzerlandGoogle Scholar
  10. Blauhut A, Steyrer P, Eichiner H, Fiegl M, Gasser O, Riediger C (2019) Lower Tuxbach diversion: a high pressure diversion tunnel: excavation and lining design for internal pressure greater than 20 bar. Geomech Tunnell 12(3):212–226CrossRefGoogle Scholar
  11. Bucher K, Kerschner H, Lumasegger M, Mergili M, Rastner P (2004) Spatial precipitation modelling for the Tyrol region. Institut für Geographie, Univ Innsbruck, Switzerland, pp 1–5Google Scholar
  12. Carle W (1975) Die mineral - und Thermalwässer Mitteleuropas - Geologie Chemismus Genese [The mineral waters, and thermal waters of Central Europe, geology chemism genesis]. Wissenschaftliche Verlagsgesellschaft, Stuttgart, GermanyGoogle Scholar
  13. Casassa G, López P, Pouyaud B, Escobar F (2009) Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, Central Asia and the Andes. Hydrol Process: Int J 23(1):31–41CrossRefGoogle Scholar
  14. Clark ID, Fritz P (2013) Environmental isotopes in hydrogeology. CRC, Boca Raton, FLGoogle Scholar
  15. Cliff RA, Spötl C, Mangini A (2010) U–Pb dating of speleothems from Spannagel cave, Austrian Alps: a high resolution comparison with U–series ages. Quat Geochronol 5(4):452–458CrossRefGoogle Scholar
  16. Czurda K (1993) Die Akratothermen von Hintertux [The acratotherms of Hintertux]. In: Die mineral- und Heilquellen Österreichs [The mineral and healing springs of Austria]. Springer, Heidelberg, Germany, pp 94–95Google Scholar
  17. Decker K, Reiter F, Brandner R, Ortner H, Bistacchi A, Massironi M (2003) Die Evaluierung tektonischer Risikozonen als Planungsgrundlage für den Brenner–Basistunnel [The evaluation of tectonic risk zones as a basis for planning for the Brenner Base Tunnel]. Geologische Bundesanstalt, Vienna Tagungsband Arbeitstagung Brenner 3:249–253Google Scholar
  18. Delpla I, Jung A-V, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35:1225–1233CrossRefGoogle Scholar
  19. Fecht M, Höfle B, Starnberger R, Kaser G (2009) Eine Karte der aktuellen Verdunstung für das Tirol atlas Gebiet anhand von Landnutzungs- und Vegetationsdaten [A map of the current evaporation for the Tyrol atlas area based on land use and vegetation data]. Institut für Geographie, University of Innsbruck, Austria, 26 pp. http://tirolatlas.uibk.ac.at/topics/water/pub/evaporation.pdf. Accessed September 2019
  20. Finger F, Frasl G, Haunschmid B, Lettner H, Quadt A von, Schermaier A, Schindlmayr AO, Steyrer HP (1993) The Zentralgneise of the Tauern window (eastern Alps): insight into an intra-alpine Variscan batholith. In: Pre-Mesozoic geology in the Alps. Springer, Heidelberg, Germany, pp 375–391CrossRefGoogle Scholar
  21. Fischer A, Seiser B, Stocker Waldhuber M, Mitterer C, Abermann J (2015) Tracing glacier changes in Austria from The Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. Cryosphere 9:753–766CrossRefGoogle Scholar
  22. Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res: Solid Earth 94(B7):9439–9451CrossRefGoogle Scholar
  23. Frisch W, Neubauer F, Satir M (1984) Concepts of the evolution of the Austroalpine basement complex (eastern Alps) during the Caledonian-Variscan cycle. Geol Rundsch 73:47–68CrossRefGoogle Scholar
  24. Fügenschuh B, Mancktelow NS, Schmid SS (2012) Comment on Rosenberg and Garcia: Estimating displacement along the Brenner fault and orogen-parallel extension in the eastern Alps, Int J Earth Sci (Geol Rundsch) (2011) 100:1129–1145. Int J Earth Sci 101(5):1451–1455CrossRefGoogle Scholar
  25. Gebrande H, Castellarin A, Lüschen E, Millahn K, Neubauer F, Nicolich R (2006) TRANSALP: a transect through a young collisional orogen: introduction. Tectonophysics 414:1–7CrossRefGoogle Scholar
  26. Geologische Bundesanstalt (GBA) (2011) GEOFAST 1: 50 000. Blatt 149–Lanersbach, GBA, ViennaGoogle Scholar
  27. Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas discharges. NZ DSIR chemistry report no. CD 2401, Dept. of Scientific and Industrial Research, Petone, New Zealand, 82 ppGoogle Scholar
  28. Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: Application of geochemistry in geothermal reservoir development. UNITAR, Rome, pp 119–144Google Scholar
  29. Glodny J, Ring U, Kühn A (2008) Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shearing in the Tauern Window, eastern Alps. Tectonics 27(4):1–27CrossRefGoogle Scholar
  30. Gremaud V, Goldscheider N (2010) Geometry and drainage of a retreating glacier overlying and recharging a karst aquifer, Tsanfleuron-Sanetsch, Swiss Alps. Acta Carsolog 39(2):289–300CrossRefGoogle Scholar
  31. Hanzer F, Helfricht K, Marke T, Strasser U (2016) Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments. Cryosphere 10(4):1859–1881CrossRefGoogle Scholar
  32. Hilberg S (2016) Natural tracers in fractured hard-rock aquifers in the Austrian part of the eastern Alps: previous approaches and future perspectives for hydrogeology in mountain regions. Hydrogeol J 24:1091–1105CrossRefGoogle Scholar
  33. Holocher J, Matta V, Aeschbach-Hertig W, Beyerle U, Hofer M, Peeters F, Kipfer R (2001) Noble gas and major element constraints on the water dynamics in an alpine floodplain. Groundwater 39(6):841–852CrossRefGoogle Scholar
  34. Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. Trans Am Geophys Union 33(4):559–569CrossRefGoogle Scholar
  35. Kern Z, Kohán B, Leuenberger M (2014) Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an alpine domain. Atmos Chem Phys 14:1897–1907CrossRefGoogle Scholar
  36. Kiessling W (1992) Palaeontological and facial features of the upper Jurassic Hochstegen marble (Tauern Window, eastern Alps). Terra Nova 4(2):184–197CrossRefGoogle Scholar
  37. Kilchmann S, Waber HN, Parriaux A, Bensimon M (2004) Natural tracers in recent groundwaters from different alpine aquifers. Hydrogeol J 12(6):643–661CrossRefGoogle Scholar
  38. Krainer K, Mostler W, Spötl C (2007) Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Austrian J Earth Sci 100:102–112Google Scholar
  39. Kralik M, Papesch W, Stichler W (2003) Austrian network of isotopes in precipitation (ANIP): quality assurance and climatological phenomenon in one of the oldest and densest networks in the world. International symposium on isotope hydrology and integrated water resources management, Vienna, 19–23 May 2003, pp 146–149Google Scholar
  40. Kralik M (2015) How to estimate mean residence times of groundwater. Proc Earth Planetary Sci 13:301–306CrossRefGoogle Scholar
  41. Krásny J, Sharp Jr, JM (2007) Introductory paper: hydrogeology of fractured rocks from particular fractures to regional approaches: state-of-the-art and future challenges. In: Groundwater in fractured rocks. IAH Selected Paper Series, vol 9, Taylor and Francis, London, pp 17–46Google Scholar
  42. Kurz W, Neubauer F, Genser J, Dachs E (1998) Alpine geodynamic evolution of passive and active continental margin sequences in the Tauern Window (eastern Alps, Austria, Italy): a review. Geol Rundsch 87:225–242CrossRefGoogle Scholar
  43. Kurz W, Neubauer F, Unzog W, Genser J, Wang X (2000) Microstructural and textural development of calcite marbles during polyphase deformation of Penninic units within the Tauern Window (eastern Alps). Tectonophysics 316:327–342.  https://doi.org/10.1016/S0040-1951(99)00257-7 CrossRefGoogle Scholar
  44. Kurz W, Unzog W, Neubauer F, Genser J (2001) Evolution of quartz microstructures and textures during polyphase deformation within the Tauern Window (eastern Alps). Int J Earth Sci 90:361–378.  https://doi.org/10.1007/s005310000153 CrossRefGoogle Scholar
  45. Lammerer B, Fruth I, Klemm DD, Prosser E, Weber-Diefenbach K (1976) Geologische und geochemische Untersuchungen im Zentralgneis und in der Greiner Schiefer Serie (Zillertaler Alpen, Tirol) [Geological and geochemical investigations in the Central Gneiss and in the Greiner Schiefer series (Zillertaler Alpen, Tirol)]. Geol Rundsch 65:436–459CrossRefGoogle Scholar
  46. Lammerer B, Gebrande H, Lüschen E, Veselá P (2008) A crustal-scale cross-section through the Tauern Window (eastern Alps) from geophysical and geological data. Geol Soc Lond Spec Publ 298:219–229.  https://doi.org/10.1144/SP298.11 CrossRefGoogle Scholar
  47. Lützenkirchen VH (2002) Structural geology and hydrogeology of brittle fault zones in the central and eastern Gotthard massif, Switzerland. PhD Thesis, ETHZ, Zurich, SwitzerlandGoogle Scholar
  48. Majorowicz J (1979) Mantle heat flow and geotherms for major tectonic units in Central Europe. In: Geothermics and geothermal energy. Birkhäuser, Basel, pp 109–123CrossRefGoogle Scholar
  49. Manning AH, Caine JS (2007) Groundwater noble gas, age, and temperature signatures in an alpine watershed: valuable tools in conceptual model development. Water Resour Res 43(4):1–16.  https://doi.org/10.1029/2006WR005349 CrossRefGoogle Scholar
  50. Markart G, Kohl B, Sotier B, Klebinder K, Schauer T, Bunza G, Pirkl H, Stern R (2011) A simple code of practice for the assessment of surface runoff coefficients for alpine soil-/vegetation units in torrential rain (version 2.0). Natural Hazards and Landscaper (BFW), Innsbruck, AustriaGoogle Scholar
  51. Markart G, Römer A, Bieber G, Pirkl H, Klebinder K, Hörfarter C, Ita A, Jochum B, Kohl B, Motschka K (2015) Assessment of shallow interflow velocities in alpine catchments for the improvement of hydrological modelling. Eng Geol Soc Territory 3:611–615Google Scholar
  52. Masset O, Loew S (2010) Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland. Hydrogeol J 18(4):863–891CrossRefGoogle Scholar
  53. Mayringer F (2011) Petrographische und geochemische Untersuchungen von Gesteinsproben aus den Zentralgneisen des westlichen Tauernfensters (Kartenblatt UTM 2229 Fulpmes-Ost) [Petrographic and geochemical investigations of rock samples from the central gneisses of the western Tauern Window (map sheet UTM 2229 Fulpmes-Ost)]. Geolog. B.-A. Report, BEV, ViennaGoogle Scholar
  54. Mignon K (1972) Überblick über die geologischen Verhältnisse (Zemmkraftwerke) [Overview of the geological conditions (Zemmkraftwerke)]. Österreichische Zeitschrift Elektrizitätswirtschaft 25:432–436Google Scholar
  55. Millen B, Brandner R, Burger U, Poscher G (2003) The essential geology and hydrogeology for 92 km of tunnelling, Austria/Italy. In: Krasny J, Sharp JM (eds) Groundwater in fractured rocks. Proceedings to the Groundwater in Fractured Rocks International Conference, Prague, April 2003, pp 361–362Google Scholar
  56. Moser H, Rauert W, Behrens H (1980) Isotopenmethoden in der Hydrologie [Isotope methods in hydrology]. Borntraeger, BerlinGoogle Scholar
  57. Neubauer F, Genser J, Kurz W, Wang X (1999) Exhumation of the Tauern Window, eastern Alps. Phys Chem Earth Solid Earth Geod 24:675–680.  https://doi.org/10.1016/S1464-1895(99)00098-8 CrossRefGoogle Scholar
  58. Patzelt G (2015) The Austrian glacier inventory GI 1, 1969, in ArcGIS (shapefile) format. PANGAEA.  https://doi.org/10.1594/PANGAEA.844983
  59. Paul F, Frey H, Le Bris R (2011) A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results. Ann Glaciol 52(59):144–152CrossRefGoogle Scholar
  60. Pili E, Tisserand D, Bureau S (2013) Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in alpine crystalline rocks. J Hazard Mater 262:887–895CrossRefGoogle Scholar
  61. Powell T, Cumming W (2010) Spreadsheets for geothermal water and gas geochemistry. In: Proceedings thirty-fifth workshop on geothermal reservoir engineering. Proc. Thirty-Fifth Workshop on Geothermal Reservoir Engineering. SGP-TR-188, Stanford University, Stanford, CA, February 1–3, 2010, pp 1–3Google Scholar
  62. Rank D, Papesch W (2005) Isotopic composition of precipitation in Austria in relation to air circulation patterns and climate. Isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate. IAEA-TECDOC-1453, IAEA, Vienna, pp 19–36Google Scholar
  63. Rosenberg CL, Schneider S (2008) The western termination of the SEMP fault (eastern Alps) and its bearing on the exhumation of the Tauern Window. Geol Soc Lond Spec Publ 298(1):197–218.  https://doi.org/10.1144/SP298.10 CrossRefGoogle Scholar
  64. Rosenberg CL, Berger A (2009) On the causes and modes of exhumation and lateral growth of the Alps. Tectonics 28(6):1–16CrossRefGoogle Scholar
  65. Rosenberg CL, Garcia S (2011) Estimating displacement along the Brenner fault and orogen-parallel extension in the eastern Alps. Int J Earth Sci 100(5):1129–1145CrossRefGoogle Scholar
  66. Rosenberg CL, Garcia S (2012) Reply to the comment of Fügenschuh et al. on the paper ‘Estimating displacement along the Brenner fault and orogen-parallel extension in the eastern Alps’ by Rosenberg and Garcia, Int J Earth Sci (Geol Rundsch) (2011) 100:1129–1145. Int J Earth Sci 101(5):1457–1464CrossRefGoogle Scholar
  67. Sanchez G, Rolland Y, Schreiber D, Giannerini G, Corsini M, Lardeaux JM (2010) The active fault system of SW Alps. J Geodyn 49(5):296–302.  https://doi.org/10.1016/j.jog.2009.11.00 CrossRefGoogle Scholar
  68. Sass I, Heldmann C-D, Schäffer R (2016) Erkundung und Beweissicherung für eine geothermale Erschließung eines Alpinen Karstaquifers im Tuxertal, Österreich [Exploration and monitoring program for a geothermal development of an alpine karst aquifer in the Tux Valley, Austria]. Grundwasser 21:147–156.  https://doi.org/10.1007/s00767-015-0312-x CrossRefGoogle Scholar
  69. Schmid SM, Scharf A, Handy MR, Rosenberg CL (2013) The Tauern Window (eastern Alps, Austria): a new tectonic map, with cross-sections and a tectonometamorphic synthesis. Swiss J Geosci 106:1–32.  https://doi.org/10.1007/s00015-013-0123-y CrossRefGoogle Scholar
  70. Schneider S, Hammerschmidt K, Rosenberg CL (2013) Dating the longevity of ductile shear zones: insight from 40Ar/39Ar in situ analyses. Earth Planet Sci Lett 369–370:43–58.  https://doi.org/10.1016/j.epsl.2013.03.002 CrossRefGoogle Scholar
  71. Schneider S (2014) Exhumation mechanisms of middle and lower crust in the western Tauern Window, eastern Alps. PhD Thesis, Freie Universität, BerlinGoogle Scholar
  72. Schön C, Lammerer B (1990) Strainanalyse an grobklastischen Metasedimenten des westlichen Tauernfensters [Strain analysis of gross clastic metasediments of the western Tauern Window]. Abh Geol B-A 49:97–106Google Scholar
  73. Selverstone J (1988) Evidence for east-west crustal extension in the eastern Alps: implications for the unroofing history of the Tauern Window. Tectonics 7(1):87–105CrossRefGoogle Scholar
  74. Spötl C, Mangini A (2010) Paleohydrology of a high-elevation, glacier-influenced karst system in the Central Alps (Austria). Austrian J Earth Sci 103(2):92–105Google Scholar
  75. Spötl C, Holzkämper S, Mangini A (2007) The last and the penultimate interglacial as recorded by speleothems from a climatically sensitive high-elevation cave site in the alps. Dev Quatern Sci 7:471–491Google Scholar
  76. Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  77. Strauhal T, Prager C, Millen B, Spoetl C, Zangerl C, Brandner R (2016) Aquifer geochemistry of crystalline rocks and quaternary deposits in a high altitude alpine environment (Kauner Valley, Austria). Austrian J Earth Sci 109(1):29–44Google Scholar
  78. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters, v 126. Wiley, Chichester, UKGoogle Scholar
  79. Taucher J (1993) Gustavit, Chalkopyrit und Dolomit aus dem Schlegeisstollen [Gustavite, chalcopyrite and dolomite from the Tuxbach water transfer tunnel]. Matrixx 2:9–16Google Scholar
  80. Thiele O (1970) Zur Stratigraphie und Tektonik der Schieferhülle der westlichen Hohen Tauern [Stratigraphy and tectonical evolution of the Schieferhülle in the western Hohe Tauern massiv]. Verhandlungen der geologischen Bundesanstalt, Vienna, pp 230–244Google Scholar
  81. Töchterle A (2011) Aspects of the geological evolution of the north-western Tauern Window: insights from the geological investigations for the planned Brenner Base Tunnel. PhD Thesis, University of Innsbruck, AustriaGoogle Scholar
  82. Töchterle A, Brandner R, Reiter F (2011) Strain partitioning on major fault zones in the north western Tauern Window: insights from the investigations to the Brenner Base Tunnel. Austrian J Earth Sci 104(1):15–35Google Scholar
  83. Vanham D (2012) The Alps under climate change: implications for water management in Europe. J Water Climate Change 3(3):197–206CrossRefGoogle Scholar
  84. Veselá P, Lammerer B (2008) The Pfitsch-Mörchner Basin, an example of the post-Variscan sedimentary evolution in the Tauern Window (eastern Alps). Swiss J Geosci 101:73–88CrossRefGoogle Scholar
  85. Vincenzi V, Gargini A, Goldscheider N, Piccinini L (2014) Differential hydrogeological effects of draining tunnels through the northern Apennines, Italy. Rock Mech Rock Eng 47(3):947–965CrossRefGoogle Scholar
  86. Vincenzi V, Gargini A, Goldscheider N (2009) Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the northern Apennines (Italy). Hydrogeol J 17(1):135–150CrossRefGoogle Scholar
  87. von Blanckenburg F, Morteani G (1989) Crystallization and deformation of amphiboles, and cummingtonite-forming reactions in the garbenschists of the Western Tauern Window (eastern Alps, Northeast Italy-western Austria). Lithos 23:163–177.  https://doi.org/10.1016/0024-4937(89)90003-0 CrossRefGoogle Scholar
  88. Vosteen HD, Rath V, Clauser C, Lammerer B (2003) The thermal regime of the eastern Alps from inversion analyses along the TRANSALP profile. Phys Chem Earth Parts A/B/C 28(9–11):393–405CrossRefGoogle Scholar
  89. Winkler G, Wagner T, Pauritsch M, Birk S, Kellerer-Pirklbauer A, Benischke R, Leis A, Morawetz R, Schreilechner MG, Hergarten S (2016) Identification and assessment of groundwater flow and storage components of the relict Schöneben rock glacier, Niedere Tauern range, eastern Alps (Austria). Hydrogeol J 24(4):937–953CrossRefGoogle Scholar
  90. Wendland F, Blum A, Coetsiers M, Gorova R, Griffioen J, Grima J, Hinsby K, Marandi A, Melo T, Panagopoulos A, Ruisi M, Traversa P, Vermooten JSA, Walraevens K (2008) European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ Geol 55(1):77–85CrossRefGoogle Scholar
  91. Zötl J, Goldbrunner J (eds) (2013) Die Mineral- und Heilwässer Österreichs: geologische Grundlagen und Spurenelemente (Mineral and balneological waters of Austria: basic geology and trace elements). Springer, Heidelberg, GermanyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Claus-Dieter Heldmann
    • 1
    Email author
  • Ingo Sass
    • 2
  • Rafael Schäffer
    • 1
  1. 1.Applied Geothermal Science and TechnologyTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Graduate School of Excellence Energy Science and EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations