Advertisement

The 3D Water Atlas: a tool to facilitate and communicate new understanding of groundwater systems

  • Alexandra Wolhuter
  • Sue VinkEmail author
  • Andre Gebers
  • Friska Pambudi
  • Jane Hunter
  • Jim Underschultz
Paper
  • 86 Downloads

Abstract

Effective management of groundwater resources requires an understanding of the complexity of groundwater systems by the experts, and a certain level of understanding and trust in management by the community. Groundwater data sharing and visualisation systems are being used across the world to provide an insight into groundwater systems. The 3D Water Atlas of the Surat Basin, Queensland, Australia, provides a way of visualising and analysing hydrogeochemical information in a way that is accessible to a wide audience. It combines data on the location, construction, water chemistry and water levels of groundwater bores within the framework of a geological model and other spatial datasets. It is freely available on a single Web-based interactive three-dimensional (3D) platform. Visualisation tools such as line graphs of groundwater bore water levels, pie charts and animations of major ions, can be used to advance understanding of groundwater resources. For example, a general regional decline, but with local variability in Hutton Sandstone groundwater levels in the Surat Basin can be seen by using the 3D Water Atlas. The combination of groundwater data with filtering, analysis and visualisation tools in the 3D Water Atlas helps to communicate complex hydrogeological concepts. It can also assist with the management of groundwater resources by improving confidence in decision-making, as necessary information can be viewed together, in context. Although the 3D Water Atlas was produced for the Surat Basin, its design means that 3D Water Atlases for different regions can be produced easily.

Keywords

Australia Groundwater management 3D visualisation Quality control Geographic information systems 

L’Atlas de l’Eau 3D: un outil pour faciliter une nouvelle compréhension des systèmes d’eau souterraine et la communiquer

Résumé

Une gestion efficace des ressources en eaux souterraines requiert une compréhension de la complexité des systèmes aquifères par les experts et un certain niveau de compréhension et de confiance dans l’administration de la part du public. Le partage des données sur les eaux souterraines et les systèmes de visualisation sont utilisés à travers le monde pour donner un éclairage sur les systèmes d’eaux souterraines. L’Atlas de l’Eau 3D du Bassin de Surat, Queensland, Australie, fournit un moyen de visualiser et d’analyser l’information hydrogéochimique d’une manière qui soit accessible à un large public. Il réunit des données sur la localisation, la conception, la chimie et le niveau de l’eau des forages d’eaux souterraines dans le cadre d’un modèle géologique et d’autres ensembles de données spatiales. Il est. disponible librement sur une plateforme interactive unique en trois dimensions (3D) basée sur le Web. Des outils de visualisation, tels des graphiques linéaires du niveau d’eau dans un forage d’eaux souterraines, des diagrammes camembert et des animations d’ions majeurs peuvent être utilisés pour avancer dans la compréhension des ressources en eaux souterraines. Par exemple, on peut constater un déclin régional d’ensemble mais avec une variabilité locale du niveau des eaux souterraines dans les Grès de Hutton du Bassin de Surat, grâce à l’Atlas de l’Eau 3D. La combinaison des données sur les eaux souterraines et d’outils de filtrage, d’analyse et de visualisation dans l’Atlas de l’Eau 3D aide à communiquer sur des concepts hydrogéologiques complexes. Celà peut aussi aider à la gestion des ressources en eaux souterraines en améliorant la confiance dans la prise de décision, car les informations nécessaires peuvent être visualisées en groupe, dans le contexte. Bien que l’Atlas de l’Eau 3D ait été établi pour le Bassin de Surat, sa conception donne à penser qu’il peut être réalisé facilement dans différentes régions.

El Atlas 3D del Agua: una herramienta para facilitar y comunicar nuevos conocimientos sobre los sistemas de aguas subterráneas

Resumen

La gestión eficaz de los recursos de aguas subterráneas requiere una comprensión de la complejidad de los sistemas de aguas subterráneas por parte de los expertos, y un cierto nivel de comprensión y confianza en la gestión por parte de la comunidad. En todo el mundo se están utilizando sistemas de visualización e intercambio de datos sobre aguas subterráneas para proporcionar una visión de los sistemas de aguas subterráneas. El Atlas de Agua 3D de la Cuenca del Surat, Queensland, Australia, proporciona una forma de visualizar y analizar la información hidrogeoquímica de una manera que es accesible a una amplia audiencia. Combina datos sobre la ubicación, construcción, química del agua y niveles de agua de las perforaciones de aguas subterráneas en el marco de un modelo geológico y otros conjuntos de datos espaciales. Está disponible gratuitamente en una única plataforma tridimensional (3D) interactiva basada en la Web. Las herramientas de visualización, como los gráficos de línea de los niveles de agua de las aguas subterráneas, los gráficos circulares y las animaciones de los principales iones, pueden utilizarse para avanzar en la comprensión de los recursos de aguas subterráneas. Por ejemplo, una disminución regional general, pero con variabilidad local en los niveles de agua subterránea de la arenisca de Hutton en la cuenca de Surat, se puede ver usando el Atlas de Agua 3D. La combinación de datos de aguas subterráneas con herramientas de filtrado, análisis y visualización en el Atlas 3D del Agua ayuda a comunicar conceptos hidrogeológicos complejos. También puede ayudar a la gestión de los recursos de aguas subterráneas mejorando la confianza en la toma de decisiones, ya que la información necesaria puede verse en conjunto, en su contexto. Aunque el Atlas del Agua 3D fue producido para la cuenca del Surat, su diseño permite producir fácilmente atlas del agua 3D para diferentes regiones.

三维水图集:便利和交流地下水系统新认识的工具

摘要

地下水资源的有效管理需要专家了解地下水系统的复杂性,也需要大众对地下水系统有一定程度的理解和对管理的信任。世界各地正使用地下水数据共享和可视化系统来深入认识地下水系统。澳大利亚昆士兰州苏拉特盆地的三维水图集为广大用户提供了可视化和分析水文地球化学信息的方法。该方法结合了地质模型和其他空间数据集的地下水钻孔的位置、构造、水化学和水位等数据。该工具可在网络交互式三维(3D)平台免费使用。可视化工具包括地下水钻孔水位线图,饼图和主要离子动画,可用于提高对地下水资源的了解。例如,通过使用三维水图集工具发现普遍性区域性下降,但在苏拉特盆地的赫顿砂岩地下水位的局部存在差异。三维水图集工具中地下水数据与滤波、分析和可视化工具相结合,有助于交互认识复杂的水文地质概念。它还可以通过提高对决策的信心来协助管理地下水资源,因为必要的信息可以放在一起查看。虽然三维水图集是为Surat盆地开发,但其设计意味着可以轻松建立不同地区的三维水图集。

O Atlas de Águas 3D: uma ferramenta para facilitar e comunicar uma nova compreensão dos sistemas de águas subterrâneas

Resumo

O gerenciamento efetivo dos recursos hídricos subterrâneos requer o entendimento da complexidade dos sistemas de águas subterrâneas por especialistas, e um certo nível de compreensão e confiança na gestão dos recursos pelas comunidades. Sistemas de compartilhamento e visualização de dados de aquíferos estão sendo usados em todo o mundo para fornecer conhecimentos acerca de sistemas de águas subterrâneas. O Atlas de Águas 3D da Bacia de Surat, em Queensland, Austrália, fornece uma maneira de visualizar e analisar informações hidrogeoquímicas de forma acessível a um público amplo. Ele combina dados sobre localização, construção, química da água e os níveis d’água de poços, no contexto de um modelo geológico e de outros conjuntos de dados espaciais. Está disponível gratuitamente em uma plataforma única, baseada em rede, interativa e tridimensional (3D). Ferramentas de visualização, gráficos de linha para nível d’água, gráficos de pizza e animações para íons maiores, podem ser usadas para promover o entendimento dos recursos hídricos subterrâneos. Por exemplo, um declínio regional geral, mas com variabilidade local nos níveis das águas subterrâneas no Arenito Hutton na Bacia de Surat, pode ser visualizado usando o Atlas de Águas 3D. A combinação de dados de águas subterrâneas com ferramentas de filtragem, análise e visualização no Atlas de Águas 3D ajuda a comunicar conceitos complexos de hidrogeologia. Pode ainda ajudar na gestão dos recursos hídricos subterrâneos, ao melhorar a confiança na tomada de decisões, uma vez que as informações necessárias podem ser vistas em conjunto, em contexto. Embora o Atlas de Águas 3D tenha sido produzido para a Bacia de Surat, seu design implica que atlas tridimensionais de águas subterrâneas podem ser produzidos facilmente para diferentes regiões.

Notes

Funding information

The authors gratefully acknowledge the financial support from the Centre for Coal Seam Gas and its foundation members, QGC/Shell, Arrow Energy, Santos, and APLNG, who also supplied data for the 3D Water Atlas.

Supplementary material

10040_2019_2032_MOESM1_ESM.pdf (763 kb)
ESM 1 (PDF 763 kb)

References

  1. Analytical Graphics (2013) Cesium: WebGL virtual globe and map engine. http://cesiumjs.org. Accessed 11 January 2019
  2. Australian Government (2018) NationalMap. https://nationalmap.gov.au/. Accessed 21 June 2019
  3. Baldwin C, Tan P-L, White I, Hoverman S, Burry K (2012) How scientific knowledge informs community understanding of groundwater. J Hydrol 474:74–83CrossRefGoogle Scholar
  4. Bingham LB, Nabatchi T, O’Leary R (2005) The new governance: practices and processes for stakeholder and citizen participation in the work of government. Public Adm Rev 65:547–558.  https://doi.org/10.1111/j.1540-6210.2005.00482.x CrossRefGoogle Scholar
  5. Boisvert E, Brodaric B (2011) GroundWater Markup Language (GWML): enabling groundwater data interoperability in spatial data infrastructures. J Hydroinf 14:93–107CrossRefGoogle Scholar
  6. Bosch OJH, Ross AH, Beeton RJS (2003) Integrating science and management through collaborative learning and better information management. Syst Res 20:107–118CrossRefGoogle Scholar
  7. Brodaric B, Boisvert E, Chery L, Dahlhaus P, Grellet S, Kmoch A, Létourneau F, Lucido J, Simons B, Wagner B (2018) Enabling global exchange of groundwater data: GroundWaterML2 (GWML2). Hydrogeol J 26:733–741CrossRefGoogle Scholar
  8. Bureau of Meteorology (2019) National Groundwater Information System, Australian Groundwater Explorer. http://www.bom.gov.au/water/groundwater/explorer/. Accessed 21 June 2019
  9. Cox ME, James A, Hawke A, Raiber M (2013) Groundwater Visualisation System (GVS): a software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation. J Hydrol 491:56–72CrossRefGoogle Scholar
  10. Dahlhaus P, Murphy A, MacLeod A, Thompson H, McKenna K, Ollerenshaw A (2016) Making the invisible visible: the impact of federating groundwater data in Victoria, Australia. J Hydroinf 18:238–255CrossRefGoogle Scholar
  11. Dando N, Swift T (2003) Transparency and assurance minding: the credibility gap. J Bus Ethics 44:195–200Google Scholar
  12. DNRME (2018) Department of Natural Resources, Mines and Energy. State of Queensland Groundwater Database – Queensland, Brisbane, AustraliaGoogle Scholar
  13. Esterle J, Zhou F, Bianchi V, Sheilds D, Sliwa R, Hentschel A, Cooling J, Tyson S (2017) Surat Upermodel II: an integrated geological framework for CSG. https://ccsg.centre.uq.edu.au/files/4928/UQ-CCSG-Research-Review-2015-Zhou-Fengde%20-%20Surat%20supermodel%202%20study%20an%20integrated%20geological%20framework%20for%20CSG.pdf. Accessed September 2019
  14. Everingham J-A, Collins N, Rifkin W, Rodriguez D, Baumgartl T, Cavaye J, Vink S (2014) How farmers, graziers, miners, and gas-industry personnel see their potential for coexistence in rural Queensland. SPE Econ Manag 6:122–130CrossRefGoogle Scholar
  15. Federation University Australia (2019) Visualising Victoria’s groundwater. https://www.vvg.org.au/. Accessed 21 June 2019
  16. Frontier Economics (2016) Economic output of groundwater dependent sectors in the Great Artesian Gasin. A report commissioned by the Australian Government and Great Artesian Basin Jurisdictions based on advice from the Great Artesian Basin Coordinating Committee, Frontier Economics, LondonGoogle Scholar
  17. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200CrossRefGoogle Scholar
  18. Grigorescu M (2011) Jurassic groundwater hydrochemical types, Surat Basin, Queensland: a carbon geostorage perspective. Geological Survey of Queensland, Brisbane, AustraliaGoogle Scholar
  19. Hess D (2007) Social reporting and new governance regulation: the prospects of achieving corporate accountability through transparency. Bus Ethics Q 17:453–476Google Scholar
  20. Hitchon B, Brulotte M (1994) Culling criteria for “standard” formation water analyses. Appl Geochem 9:637–645CrossRefGoogle Scholar
  21. Hodgkingson J, Grigorescu M (2013) Background research for selection of potential geostorage targets: case studies from the Surat Basin, Queensland. Aust J Earth Sci 60:71–89CrossRefGoogle Scholar
  22. Howe P, Moran C, Vink S (2010) Framework for assessing cumulative effects of mining operations on groundwater systems. Water in Mining: 2nd International Congress on Water Management in the Mining Industry (WIM 2010), Santiago, Chile, June 2010Google Scholar
  23. Hunter J, Brooking C, Reading L, Vink S (2016) A Web-based system enabling the integration, analysis, and 3D sub-surface visualization of groundwater monitoring data and geological models. Int J Digit Earth 9:197–214CrossRefGoogle Scholar
  24. Iwanaga T, El Swah S, Jakeman A (2013) Design and implementation of a web-based groundwater data management system. Math Comput Simul 93:164–174CrossRefGoogle Scholar
  25. Klug H, Kmoch A (2014) A SMART groundwater portal: an OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand. Comput Geosci 69:78–86CrossRefGoogle Scholar
  26. Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320CrossRefGoogle Scholar
  27. Lee J-Y, Kwon KD (2016) Current status of groundwater monitoring networks in Korea. Water. 8:168–184CrossRefGoogle Scholar
  28. Lockwood M, Davidson J, Curtis A, Straford E, Griffith R (2010) Governance principles for natural resource management. Soc Nat Resour 23:986–1001CrossRefGoogle Scholar
  29. Moffat K, Lacey J, Zhang A, Leipold S (2016) The social licence to operate: a critical review. Forestry 89:477–488CrossRefGoogle Scholar
  30. Netherlands Organisation for Applied Scientific Research (TNO) (2019) DINOloket. https://www.dinoloket.nl/en. Accessed 14 June 2019
  31. NICTA (2014) Cesium Ground-Push Plugin. https://github.com/NICTA/cesium-groundpush-plugin. Accessed 11 January 2019
  32. O’Hara K (2012) Transparency, open data and trust in government: shaping the infosphere. Proceedings of the 4th Annual ACM Web Science Conference. ACM, Evanston, ILGoogle Scholar
  33. OGIA (2015) Bore Baseline Assessment Database data dictionary version 0.8. Office of Groundwater Impact Assessment, Department of Natural Resources and Mines, State of Queensland, Brisbane, AustraliaGoogle Scholar
  34. OGIA (2016a) Underground water impact report for the Surat Cumulative Management Area. Office of Groundwater Impact Assessment, Department of Natural Resources, Mines and Energy, State of Queensland, Brisbane, AustraliaGoogle Scholar
  35. OGIA (2016b) Groundwater modelling report for the Surat Cumulative Management Area, Office of Groundwater Impact Assessment, Department of Natural Resources, Mines and Energy, State of Queensland, Brisbane, AustraliaGoogle Scholar
  36. Origin (2017) 2016–2017 groundwater assessment report. Report DN/ID 13942980. https://www.aplng.com.au/content/dam/aplng/compliance/management-plans/2016-2017%20AnnualGroundwaterAssessment%20-%20Rev%200.pdf. Accessed 17 March 2019
  37. POSTGIS (2014) Spatial and geographic objects for PostgreSQL. http://postgis.net/. Accessed 11 January 2019
  38. QWC (2012) Underground water impact report for the Surat Cumulative Management Area. Queensland Water Commission, Brisbane, AustraliaGoogle Scholar
  39. Swaab RI, Postmes T, Neijens P, Kiers MH, Dumay ACM (2002) Multiparty negotiation support: the role of visualization’s influence on the development of shared mental models. J Manag Inf Syst 19:129–150CrossRefGoogle Scholar
  40. Tan P-L, Baldwin C, White I, Burry K (2012) Water planning in the Condamine Alluvium, Queensland: sharing information and eliciting views in a context of overallocation. J Hydrol 474:38–46CrossRefGoogle Scholar
  41. Towler B, Firouzi M, Underschultz J, Rifkin W, Garnett A, Schultz H, Esterle J, Tyson S, Witt K (2016) An overview of the coal seam gas developments in Queensland. J Nat Gas Sci Eng 31:249–271CrossRefGoogle Scholar
  42. United States Geological Services (USGS) Office of Water Information (2019) United States National Ground-Water Monitoring Network. https://cida.usgs.gov/ngwmn/. Accessed 21 June 2019
  43. Underschultz JR, Vink S, Garnett A (2018) Coal seam gas associated water production in Queensland: actual vs predicted. J Nat Gas Sci Eng 52:410–422CrossRefGoogle Scholar
  44. Vink S (2014) Coal seam gas and water issues. AusIMM Bulletin, AusIMM, Carlton, Victoria, AustraliaGoogle Scholar
  45. Vink S (2017) The Importance of Assessing Cumulative Impacts on Water: CSG Development in Australia. Water Energy Nexus Special Issue. Japan Soc Energy Resour 39(4):231–237Google Scholar
  46. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global deletion of groundwater resources. Geophys Res Lett 37:L20402CrossRefGoogle Scholar
  47. Wang L, Jackson C, Pachocka M, Kingdon A (2016) A seamlessly coupled GIS and distributed groundwater flow model. Environ Model Softw 82:1–6CrossRefGoogle Scholar
  48. Water Act (2000) Water Act 2000. Queensland Legislation, Brisbane, Australia. https://www.legislation.qld.gov.au/view/pdf/inforce/current/act-2000-034/lh. Accessed September 2019
  49. Williams J, Stubbs T, Milligan A (2012) An analysis of coal seam gas production and natural resource management in Australia. Report prepared for the Australian Council of Environmental Deans and Directors, Canberra, AustraliaGoogle Scholar
  50. Young P (1996) Three dimensional information visualization. Technical report 12/96, University of Durham, Department of Computer Science, Visualisation Research Group, Centre for Software Maintenance, Durham, UKGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexandra Wolhuter
    • 1
  • Sue Vink
    • 2
    Email author
  • Andre Gebers
    • 3
  • Friska Pambudi
    • 3
  • Jane Hunter
    • 3
  • Jim Underschultz
    • 1
  1. 1.Centre for Coal Seam Gas, Faculty of Engineering, Architecture and Information TechnologyThe University of QueenslandBrisbaneAustralia
  2. 2.Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  3. 3.School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture and Information TechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations