Advertisement

The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016

  • Kamal AhmedEmail author
  • Shamsuddin Shahid
  • Mehmet Cüneyd Demirel
  • Nadeem Nawaz
  • Najeebullah Khan
Paper
  • 34 Downloads

Abstract

Groundwater is regarded as one of the most reliable and vulnerable sources of drinking water in many countries. Declining groundwater levels, due to over-exploitation and climate-change impacts, emphasize the need for sustainable management of this valuable resource. The concept of reliability-resiliency-vulnerability (RRV) has been adopted in this study to assess the spatial changes in the sustainability of aquifers for different periods to identify the main factors affecting groundwater sustainability in Pakistan. This is important for the country, as the substantial decline of groundwater levels in recent years has affected the water security of the growing economy. The satellite-based gridded Gravity Recovery and Climate Experiment (GRACE) groundwater anomaly data for the period 2002–2016 were used for this spatial assessment. The results revealed precipitation as the dominant factor associated with changing groundwater storage in Pakistan. A large decrease in aquifer storage was found over the study period. The groundwater-level decline was found to be greater in the region where agriculture is more intense, resulting in over-exploitation of groundwater for irrigation. The reduction of groundwater storage has led to a decrease in sustainability, especially in recent years (2008–2016) compared with previous periods (2002–2010 and 2005–2013). This study emphasized the need for groundwater resource management strategies such as reduction of groundwater abstraction in drought years, rescheduling the crop calendar to take advantage of rainfall, switching to less water-intensive crops, etc., particularly in groundwater depleting regions.

Keywords

Groundwater management Groundwater storage changes Groundwater sustainability Reliability-resiliency-vulnerability Pakistan 

Caractérisation du changement intervenu dans la durabilité des eaux souterraines au Pakistan entre 2002 et 2016

Résumé

L’eau souterraine est considérée comme l’une des ressources en eau potable les plus fiables et les plus vulnérables dans beaucoup de pays. Des niveaux d’eau souterraine en baisse du fait des impacts de la surexploitation et du changement climatique soulignent le besoin d’une gestion durable de cette ressource précieuse. Le concept de fiabilité-résilience-vulnérabilité (FRV) a été adopté dans la présente étude pour évaluer les changements dans l’espace de la durabilité des aquifères à différentes périodes, en vue d’identifier les facteurs principaux qui affectent la durabilité des eaux souterraines au Pakistan. Ceci est important pour le pays, car la baisse substantielle du niveau des eaux souterraines aux cours des années récentes a affecté la sécurité en eau d’une économie en croissance. Les données anomales sur les eaux souterraines, référencées dans la grille des satellites Gravity Recovery and Climate Experiment(GRACE) pour la période 2002–2016, ont été utilisées pour cette évaluation spatiale. Les résultats montrent que les précipitations sont le facteur dominant dans les changements intervenus dans l’emmagasinement des eaux souterraines au Pakistan. Une importante diminution du stockage en aquifère a été constatée durant la période d’étude. La baisse du niveau des eaux souterraines a été reconnue comme plus importante dans la région où l’agriculture est plus intense, d’où résulte une surexploitation des eaux souterraines par l’irrigation. La réduction du stockage des eaux souterraines a conduit à une décroissance de la durabilité, particulièrement dans les années récentes (2008–2016), par rapport aux périodes précédentes (2002–2016 et 2005–2013). La présente étude souligne la nécessité de stratégies de gestion de la ressource en eau souterraine, tels que la réduction de l’exploitation de l’eau souterraine dans les années de sècheresse, le ré-échelonnement du calendrier des culture pour tirer parti des précipitations, le passage à des cultures moins gourmandes en eau etc., particulièrement dans les régions d’appauvrissement des eaux souterraines.

Las cambiantes características de la sostenibilidad de las aguas subterráneas en Pakistán desde 2002 a 2016

Resumen

Las aguas subterráneas están consideradas como una de las fuentes de agua potable más fiables y vulnerables en muchos países. El descenso de los niveles de agua subterránea, debido a la sobreexplotación y a los efectos del cambio climático, pone de relieve la necesidad de una gestión sostenible de este valioso recurso. El concepto de confiabilidad, resiliencia y vulnerabilidad (RRV) ha sido adoptado en este estudio para evaluar los cambios espaciales en la sostenibilidad de los acuíferos durante diferentes períodos para identificar los principales factores que afectan la sostenibilidad de las aguas subterráneas en Pakistán. Esto es importante para el país, ya que la disminución sustancial de los niveles de agua subterránea en los últimos años ha afectado la seguridad hídrica de una creciente economía. Para esta evaluación espacial se utilizaron los datos de anomalías de aguas subterráneas del Gravity Recovery and Climate Experiment (GRACE) para el período 2002–2016. Los resultados revelaron que la precipitación es el factor dominante asociado con el cambio en el almacenamiento de agua subterránea en Pakistán. Se encontró una gran disminución en el almacenamiento del acuífero durante el período de estudio. El descenso del nivel de las aguas subterráneas fue mayor en la región donde la agricultura es más intensa, lo que dio lugar a la sobreexplotación de las aguas subterráneas para el riego. La reducción del almacenamiento de aguas subterráneas ha conducido a una disminución de la sostenibilidad, especialmente en los últimos años (2008–2016) en comparación con períodos anteriores (2002–2010 y 2005–2013). Este estudio enfatizó la necesidad de estrategias de gestión de los recursos de agua subterránea, tales como la reducción de la extracción de agua subterránea en años de sequía, la reprogramación del calendario de cultivos para aprovechar las lluvias, el cambio a cultivos menos intensivos en agua, etc., particularmente en las regiones que agotan las aguas subterráneas.

巴基斯坦2002至2016年地下水可持续性变化特征

摘要

在许多国家,地下水被认为是最可靠和最有价值的饮用水源之一。由于过度开采和气候变化影响,下降的地下水位加大了对地下水宝贵资源进行可持续管理的必要性。本研究采用可靠性-恢复性-脆弱性(RRV)的概念来评估不同时期含水层可持续性的空间变化,从而确定影响巴基斯坦地下水可持续性的主要因素。因为近年来地下水位的大幅下降影响了经济增长的水安全问题,这项研究对巴基斯坦很重要。2002–2016年期间基于卫星的重力恢复和气候试验(GRACE)地下水异常网格数据用于空间评估。结果表明降水是与巴基斯坦地下水储量变化相关的主导因素。研究期内发现含水层储存量大幅减少。在农业活动强烈地区,地下水位下降幅度更大,导致了用于灌溉的地下水过度开采。与先前时期(2002–2010和2005–2013)相比,特别是近几年(2008–2016),地下水储存量的减少导致可持续性下降。该研究强调了地下水资源管理战略的必要性,例如减少干旱年份的地下水开采量,利用降雨重新规划作物日历,替换水资源密集度较低的作物等,特别是在地下水枯竭地区。

As características mutáveis da sustentabilidade das águas subterrâneas no Paquistão de 2002 a 2016

Resumo

As águas subterrâneas são consideradas uma das fontes mais confiáveis e vulneráveis de água potável em muitos países. O declínio dos níveis das águas subterrâneas, devido à sobre-exploração e aos impactos das mudanças climáticas, enfatiza a necessidade de um manejo sustentável desse valioso recurso. O conceito de confiabilidade-resiliência-vulnerabilidade (CRV) foi adotado neste estudo para avaliar as mudanças espaciais na sustentabilidade dos aquíferos por diferentes períodos para identificar os principais fatores que afetam a sustentabilidade das águas subterrâneas no Paquistão. Isso é importante para o país, já que o declínio substancial dos níveis de água subterrânea nos últimos anos afetou a segurança da água da economia em crescimento. Os dados de anomalia das águas subterrâneas do GRACE (Gravity Recovery and Climate Experiment) gravados em satélite para o período 2002–2016 foram utilizados para esta avaliação espacial. Os resultados revelaram a precipitação como o fator dominante associado à mudança do armazenamento de água subterrânea no Paquistão. Uma grande diminuição no armazenamento de aquíferos foi encontrada durante o período do estudo. O declínio do nível do lençol freático foi maior na região onde a agricultura é mais intensa, resultando em exploração excessiva das águas subterrâneas para irrigação. A redução do armazenamento de água subterrânea levou a uma diminuição na sustentabilidade, especialmente nos últimos anos (2008–2016) em comparação com períodos anteriores (2002–2010 e 2005–2013). Este estudo enfatizou a necessidade de estratégias de gestão de recursos hídricos subterrâneos, como a redução da captação de água subterrânea em anos de seca, reescalonamento do calendário agrícola para aproveitar as chuvas, mudança para cultivos menos intensivos em água, etc., particularmente em regiões de esgotamento.

Notes

Funding information

This work is supported by the Professional Development Research University (PDRU) grant No. Q.J130000.21A2.04E10 of the Universiti Teknologi Malaysia. The third author is also supported by Turkish Scientific and Technical Research Council (TÜBİTAK) grant No. 118C020.

References

  1. Ahmad SS, Simonovic SP (2013) Spatial and temporal analysis of urban flood risk assessment. Urban Water J 10:26–49CrossRefGoogle Scholar
  2. Ahmed K, Shahid S, Harun SB (2014) Spatial interpolation of climatic variables in a predominantly arid region with complex topography. Environ Syst Decis 34:555–563Google Scholar
  3. Ahmed K, Shahid S, bin Harun S, Ismail T, Nawaz N, Shamsudin S (2015a) Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sci Inform 8:539–549.  https://doi.org/10.1007/s12145-014-0173-3 CrossRefGoogle Scholar
  4. Ahmed K, Shahid S, Harun SB, Wang X-J (2015b) Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch Env Res Risk A 30:747–762.  https://doi.org/10.1007/s00477-015-1117-2 CrossRefGoogle Scholar
  5. Ahmed K, Shahid S, Chung E-S, Ismail T, Wang X-J (2017) Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim Res 74:95–107CrossRefGoogle Scholar
  6. Ahmed K, Shahid S, Ismail T, Nawaz N, Wang X-J (2018a) Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera 31:301–316CrossRefGoogle Scholar
  7. Ahmed K, Shahid S, Nawaz N (2018b) Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos Res 214:364–374.  https://doi.org/10.1016/j.atmosres.2018.08.020 CrossRefGoogle Scholar
  8. Ashofteh P-S, Rajaee T, Golfam P (2017) Assessment of water resources development projects under conditions of climate change using efficiency indexes (EIs). Water Resour Manag 31:3723–3744CrossRefGoogle Scholar
  9. Ashraf A, Ahmad Z (2008) Regional groundwater flow modelling of upper Chaj Doab of Indus Basin, Pakistan using finite element model (FEFLOW) and geoinformatics. Geophys J Int 173:17–24CrossRefGoogle Scholar
  10. Ashraf M, Zeeshan AB (2012) Diagnostic analysis and fine tuning of skimming well design and operational strategies for sustainable groundwater management-indus basin of Pakistan. Irrig Drain 61:270–282CrossRefGoogle Scholar
  11. Aydin NY, Zeckzer D, Hagen H, Schmitt T (2015) A decision support system for the technical sustainability assessment of water distribution systems. Environ Model Softw 67:31–42CrossRefGoogle Scholar
  12. Bhanja SN, Mukherjee A, Saha D, Velicogna I, Famiglietti JS (2016) Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J Hydrol 543:729–738CrossRefGoogle Scholar
  13. Bhanja SN, Mukherjee A, Rodell M (2018) Groundwater storage variations in India. In: Groundwater of South Asia. Springer, pp 49–59Google Scholar
  14. Bhatti SS, Khattak MUK, Roohi R (2008) Planning water resource management in Pishin-Lora river basin of Balochistan using GIS/RS techniques. In: Advances in Space Technologies, 2008. ICAST 2008, 2nd International Conference on Advances in Space Technologies, Islamabad, Pakistan, 29–30 Nov. 2008, pp 91–97Google Scholar
  15. Center for Space Research (2019) http://www2.csr.utexas.edu/grace. Accessed August 2019
  16. Chinnasamy P, Maheshwari B, Prathapar S (2015) Understanding groundwater storage changes and recharge in Rajasthan, India through remote sensing. Water 7:5547–5565CrossRefGoogle Scholar
  17. Daraz Khan G, Latif M, Hassan S (2003) The role of controlled drainage under drought conditions in an irrigated area in NWFP, Pakistan. Irrig Drain 52:147–162CrossRefGoogle Scholar
  18. Dinda S (2015) Adaptation to Climate Change for Sustainable Development: A Survey. In: Natural Resources Management: Concepts, Methodologies, Tools, and Applications. IGI Global, pp 334–364Google Scholar
  19. Ethteram M, Mousavi S-F, Karami H, Farzin S, Deo R, Othman FB, K-W Chau, Sarkamaryan S, Singh VP, El-Shafie A (2018) Bat algorithm for dam–reservoir operation. Environ Earth Sci 77:510CrossRefGoogle Scholar
  20. Hamed KH (2008) Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363CrossRefGoogle Scholar
  21. Hanif M, Khan AH, Adnan S (2013) Latitudinal precipitation characteristics and trends in Pakistan. J Hydrol 492:266–272CrossRefGoogle Scholar
  22. Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18:14–20CrossRefGoogle Scholar
  23. Hazbavi Z, Baartman JE, Nunes JP, Keesstra SD, Sadeghi SH (2018) Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecol Indic 87:196–208CrossRefGoogle Scholar
  24. Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67:386–391CrossRefGoogle Scholar
  25. Iqbal N, Hossain F, Lee H, Akhter G (2017) Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools. Environ Monit Assess 189:128CrossRefGoogle Scholar
  26. Iqbal Z, Shahid S, Ahmed K, Ismail T, Nawaz N (2019) Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor Appl Climatol.  https://doi.org/10.1007/s00704-019-02773-4
  27. Karamouz M, Mohammadpour P, Mahmoodzadeh D (2017) Assessment of sustainability in water supply-demand considering uncertainties. Water Resour Manag 31:3761–3778CrossRefGoogle Scholar
  28. Kendall MG (1948) Rank correlation methods. Griffin, Oxford, UKGoogle Scholar
  29. Khan N, Shahid S, Ismail T, Ahmed K, Nawaz N (2018a) Trends in heat wave related indices in Pakistan. Stoch Environ Res Risk Assess 33:287–302.  https://doi.org/10.1007/s00477-018-1605-2
  30. Khan N, Shahid S, Tb I, Wang X-J (2018b) Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor Appl Climatol.  https://doi.org/10.1007/s00704-018-2520-7
  31. Khan N, Pour SH, Shahid S, Ismail T, Ahmed K, Chung ES, Nawaz N, Wang XJ (2019) Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence. Meteorol Appl.  https://doi.org/10.1002/met.1792
  32. Kim U, Kaluarachchi JJ (2009) Climate change impacts on water resources in the upper Blue Nile River basin, Ethiopia. J Am Water Resour Assoc 45:1361–1378CrossRefGoogle Scholar
  33. Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24CrossRefGoogle Scholar
  34. Kwon Y, Hwang J, Seo Y (2018) Performance of a RBSN under the RCP scenarios: a case study in South Korea. Sustainability 10:1242CrossRefGoogle Scholar
  35. Laghari A, Vanham D, Rauch W (2012) The Indus basin in the framework of current and future water resources management. Hydrol Earth Syst Sci 16:1063CrossRefGoogle Scholar
  36. Lee E, Jayakumar R, Shrestha S, Han Z (2018) Assessment of transboundary aquifer resources in Asia: status and progress towards sustainable groundwater management. J Hydrol 20:103–115.  https://doi.org/10.1016/j.ejrh.2018.01.004
  37. Long D, Yang Y, Wada Y, Hong Y, Liang W, Chen Y, Yong B, Hou A, Wei J, Chen L (2015) Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River basin. Remote Sens Environ 168:177–193CrossRefGoogle Scholar
  38. Maity R, Sharma A, Nagesh Kumar D, Chanda K (2012) Characterizing drought using the reliability-resilience-vulnerability concept. J Hydrol Eng 18:859–869CrossRefGoogle Scholar
  39. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245.  https://doi.org/10.2307/1907187 CrossRefGoogle Scholar
  40. Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3:153–165CrossRefGoogle Scholar
  41. Moiwo JP, Yang Y, Tao F, Lu W, Han S ( 2011) Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model, Water Resour. Res., 47, W07521,  https://doi.org/10.1029/2010WR010157
  42. Mondal MS, Chowdhury JU, Ferdous MR (2010) Risk-based evaluation for meeting future water demand of the Brahmaputra floodplain within Bangladesh. Water Resour Manag 24:853–869CrossRefGoogle Scholar
  43. Muhammad AM, Zhonghua T, Dawood AS, Earl B (2015) Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofis Int 54:67–81Google Scholar
  44. Mukherjee A, Bhanja SN (2018) Estimating Present-Day Groundwater Recharge Rates in India. In: Mukherjee A (ed) Groundwater of South Asia. Springer Singapore, Singapore, pp 37–47.  https://doi.org/10.1007/978-981-10-3889-1_3
  45. Onta PR, Gupta AD, Harboe R (1991) Multistep planning model for conjunctive use of surface-and ground-water resources. J Water Resour Plan Manag 117:662–678CrossRefGoogle Scholar
  46. Patterson LA, Lutz BD, Doyle MW (2013) Characterization of drought in the South Atlantic, United States. J Am Water Resour Assoc 49:1385–1397.  https://doi.org/10.1111/jawr.12090 CrossRefGoogle Scholar
  47. Prats AG, Picó SG (2010) Performance evaluation and uncertainty measurement in irrigation scheduling soil water-balance approach. J Irrig Drain Eng 136:732–743CrossRefGoogle Scholar
  48. Qureshi AS (2011) Water management in the Indus basin in Pakistan: challenges and opportunities. Mt Res Dev 31:252–260CrossRefGoogle Scholar
  49. Qureshi AS (2015) Improving food security and livelihood resilience through groundwater management in Pakistan. Glob Advan Res J Agric Sci 4:678–710Google Scholar
  50. Rasul G (2016) Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environ Dev 18:14–25.  https://doi.org/10.1016/j.envdev.2015.12.001
  51. Raza M, Hussain F, Lee J-Y, Shakoor MB, Kwon KD (2017) Groundwater status in Pakistan: a review of contamination, health risks, and potential needs. Crit Rev Environ Sci Technol 47:1713–1762CrossRefGoogle Scholar
  52. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999CrossRefGoogle Scholar
  53. Salem GSA, Kazama S, Shahid S, Dey NC (2018) Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agric Water Manag 208:33–42CrossRefGoogle Scholar
  54. Sarzaeim P, Bozorg-Haddad O, Fallah-Mehdipour E, Loáiciga HA (2017) Climate change outlook for water resources management in a semiarid river basin: the effect of the environmental water demand. Environ Earth Sci 76:498CrossRefGoogle Scholar
  55. Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569CrossRefGoogle Scholar
  56. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  57. Seo S, Mahinthakumar G, Sankarasubramanian A, Kumar M (2018) Assessing the restoration time of surface water and groundwater systems under groundwater pumping. Stoch Env Res Risk A 32:2741–2759CrossRefGoogle Scholar
  58. Shahid S (2008) Spatial and temporal characteristics of droughts in the western part of Bangladesh. Hydrol Process 22:2235–2247.  https://doi.org/10.1002/hyp.6820 CrossRefGoogle Scholar
  59. Shakoor A, Mahmood Khan Z, Arshad M, Farid HU, Sultan M, Azmat M, Shahid MA, Hussain Z (2017) Regional groundwater quality management through hydrogeological modeling in LCC, West Faisalabad, Pakistan. J Chem 2017(1):1–16Google Scholar
  60. Siebert S, Burke J, Faures J-M, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14:1863–1880CrossRefGoogle Scholar
  61. Simonovic SP, Li L (2004) Sensitivity of the Red River Basin flood protection system to climate variability and change. Water Resour Manag 18:89–110CrossRefGoogle Scholar
  62. Sun Z, Zhu X, Pan Y, Zhang J, Liu X (2018) Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River basin, China. Sci Total Environ 634:727–738CrossRefGoogle Scholar
  63. Sung J, Chung E-S, Shahid S (2018) Reliability-resiliency-vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustainability 10:3043CrossRefGoogle Scholar
  64. Tallaksen LM, Van Lanen HA (2004) Hydrological drought: processes and estimation methods for streamflow and groundwater vol 48. Elsevier, Sxci. B.V., Amsterdam, Netherlands.Google Scholar
  65. Taniguchi M (2014) Groundwater as a Key of Adaptation to Climate Change. In: Taniguchi M, Hiyama T (eds) Groundwater as a Key for Adaptation to Changing Climate and Society. Springer Japan, Tokyo, pp 17–27.  https://doi.org/10.1007/978-4-431-54968-0_2
  66. Thomas BF, Caineta J, Nanteza J (2017a) Global assessment of groundwater sustainability based on storage anomalies. Geophys Res Lett 44:11,445.  https://doi.org/10.1002/2017GL076005
  67. Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF (2017b) GRACE groundwater drought index: evaluation of California Central Valley groundwater drought. Remote Sens Environ 198:384–392CrossRefGoogle Scholar
  68. UN (2004) United Nations map of Pakistan. https://www.un.org/Depts/Cartographic/map/profile/pakistan.pdf. Accessed July 2019
  69. van Steenbergen F, Kaisarani AB, Khan NU, Gohar MS (2015) A case of groundwater depletion in Balochistan, Pakistan: enter into the void. J Hydrol 4:36–47.  https://doi.org/10.1016/j.ejrh.2014.11.003 Google Scholar
  70. Vrba J, Lipponen A, Girman J, van der Gun J, Haie N, Hirata R, Lopez-Gunn E, Neupane B, Shah T, Wallin B (2007) Groundwater resources sustainability indicators. UNESCO, ParisGoogle Scholar
  71. Watkins MM, Wiese DN, Yuan DN, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671CrossRefGoogle Scholar
  72. Watto MA, Mugera AW (2016) Groundwater depletion in the Indus Plains of Pakistan: imperatives, repercussions and management issues. Int J River Basin Manag 14:447–458.  https://doi.org/10.1080/15715124.2016.1204154
  73. Watto MA, Mugera AW, Kingwell R, Saqab MM (2018) Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan. Hydrogeol J 26(7): 2411–2425Google Scholar
  74. WMO (2000) Detecting Trend and Other Changes in Hydrological Data. WOKCDMP-45, WMO/TD 1013Google Scholar
  75. Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kamal Ahmed
    • 1
    • 2
    Email author
  • Shamsuddin Shahid
    • 1
  • Mehmet Cüneyd Demirel
    • 3
  • Nadeem Nawaz
    • 2
  • Najeebullah Khan
    • 1
  1. 1.School of Civil Engineering, Faculty of EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  2. 2.Faculty of Water Resource ManagementLasbela University of Agriculture, Water and Marine SciencesBalochistanPakistan
  3. 3.Department of Civil EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations