Advertisement

Wastewater impacts on groundwater at a fractured sedimentary bedrock site in Ontario, Canada: implications for First Nations’ source-water protection

  • Rachael E. MarshallEmail author
  • Jana Levison
  • Edward A. McBean
  • Beth Parker
Paper
  • 62 Downloads

Abstract

The impacts of wastewater on Indigenous drinking water sources is an issue of concern across Canada. This study investigated the wastewater impacts on groundwater resources at a First Nations reserve located on a vulnerable fractured sedimentary bedrock aquifer in southern Ontario. The objectives were to examine the spatiotemporal variability of a variety of tracers of wastewater and their movement to groundwater. The tracers included nitrate, E. coli, total coliforms, and the artificial sweeteners sucralose, acesulfame, and cyclamate. Isotopes in the groundwater were also examined, including tritium and the isotopes of oxygen and nitrogen in dissolved inorganic nitrate. Three multilevel monitoring systems (seven-channel continuous multi-channel tubing) were retrofitted in unused drinking-water wells on the reserve and monitored from December 2015 to November 2016. Results indicate that groundwater at various depths has been impacted by the septic systems on the reserve. The fractures intersected by the three retrofitted wells contain a mix of newly recharged and older water, and contaminant peaks do not always correspond with ports aligned with higher hydraulic conductivity, showing variable travel times for the constituents. The selection of wastewater management systems that are appropriate for the particular hydrogeological setting on the reserves is critical to providing safe, clean drinking water to Indigenous communities. In particular, special consideration should be made for communities situated on fractured sedimentary bedrock aquifers with thin overburden.

Keywords

Fractured rock Groundwater monitoring Septic contamination Artificial sweeteners Canada 

Impacts des eaux usées sur les eaux souterraines au niveau d’un site de substratum rocheux sédimentaire fracturé en Ontario, Canada: répercussions en terme de protection des sources d’eau des Premières Nations

Résumé

Les répercussions des eaux usées sur les sources d’eau pour l’alimentation des peuples autochtones sont un sujet de préoccupation pour l’ensemble du territoire canadien. Cette étude a porté sur l’impact des eaux usées sur les ressources en eau souterraine d’une réserve des Premières Nations située sur un aquifère sédimentaire fracturé vulnérable dans le Sud de l’Ontario. Les objectifs étaient d’examiner la variabilité spatio-temporelle d’une variété de traceurs d’eaux usées et leur migration vers les eaux souterraines. Les traceurs comprenaient les nitrates, E.coli, les coliformes totaux, et les édulcorants artificiels tels que le sucralose, l’acesulfame, et le cyclamate. Les isotopes dans les eaux souterraines ont également été examinées, avec le tritium et les isotopes de l’oxygène et de l’azote du nitrate inorganique dissous. Trois systèmes de surveillance multi-niveaux (tubes multicanaux continus à sept canaux) ont été déployés dans des puits d’eau potable inutilisés dans la réserve et surveillés de décembre 2015 à novembre 2016. Les résultats indiquent que les eaux souterraines à différentes profondeurs ont été impactées par les systèmes septiques sur le territoire de la réserve. Les fractures recoupées par les trois puits réaménagés contiennent un mélange d’eau de recharge récente et plus ancienne, et les pics de contaminations ne correspondent pas toujours avec les ports alignés avec un horizon à conductivité hydraulique plus élevée, montrant des temps de transit variables pour les composants. La sélection des systèmes de gestion des eaux usées qui sont appropriés pour le contexte hydrogéologique des réserves est essentielle pour fournir une eau potable salubre et propre aux communautés des autochtones. En particulier, une attention particulière devrait être accordée aux communautés situées sur des aquifères de substratum sédimentaire fracturé avec une faible couverture géologique.

Impactos de las aguas residuales en las aguas subterráneas de un basamento sedimentario fracturado en Ontario, Canadá: implicancias para la protección de las fuentes de agua de las Naciones Originarias

Resumen

El impacto de las aguas residuales en las fuentes de agua potable de los indígenas es un tema de preocupación en todo Canadá. Este estudio investigó los impactos de las aguas residuales en los recursos de aguas subterráneas de una reserva de las Naciones Originarias ubicada en un acuífero sedimentario vulnerable y fracturado en el sur de Ontario. Los objetivos eran examinar la variabilidad espacio temporal de una variedad de trazadores de aguas residuales y su movimiento hacia las aguas subterráneas. Los trazadores incluían nitrato, E. coli, coliformes totales y los edulcorantes artificiales sucralosa, acesulfamo y ciclamato. También se examinaron los isótopos en las aguas subterráneas, incluyendo el tritio y los isótopos de oxígeno y nitrógeno en el nitrato inorgánico disuelto. Tres sistemas de monitoreo multinivel (tubería multicanal continua de siete canales) fueron instalados en pozos de agua potable no utilizados en la reserva y monitoreados entre diciembre de 2015 y noviembre de 2016. Los resultados indican que el agua subterránea a diferentes profundidades ha sido impactada por los sistemas sépticos de la reserva. Las fracturas intersectadas por los tres pozos readaptados contienen una mezcla de agua recién recargada y más vieja, y los picos de contaminantes no siempre se corresponden con los puertos alineados con una conductividad hidráulica más alta, lo que muestra tiempos de desplazamiento variables para los constituyentes. La selección de sistemas de manejo de aguas residuales que sean apropiados para el entorno hidrogeológico particular en las reservas es crítica para proporcionar agua potable segura y limpia a las comunidades indígenas. En particular, se debe prestar especial atención a las comunidades situadas en acuíferos sedimentarios fracturados con una sobrecarga delgada.

加拿大安大略省破碎沉积基岩场地废水对地下水的影响:原著民水源保护的影响

摘要

废水对原著民饮用水源的影响是整个加拿大令人关注的问题。这项研究调查了安大略省南部脆弱的裂隙沉积基岩含水层的原著民保护区废水对地下水资源的影响。目的是研究不同废水示踪剂及其向地下水运动的时空变异性。示踪剂包括硝酸盐,大肠杆菌,总大肠菌群和人造甜味剂三氯蔗糖,乙酰磺胺酸和甜蜜素。研究还用了包括溶解无机硝酸盐中氚和氮氧同位素的地下水同位素。三个多层监测系统(七通道连续多通道管道)在储备水源未使用的饮用水井中进行了改造并在2015年12月至2016年11月开展了监测。结果表明,不同深度的地下水受到了水源储备区化粪池系统的影响。三个改造井相交的裂缝包含新补给和老水的混合,污染物峰值并不总是与具有较高的水力传导率位置相对应,显示了组分运移时间是可变的。选择适合水源储备特定水文地质环境的废水管理系统对于原著民社区提供安全,清洁的饮用水至关重要。特别是,应特别考虑位于具有薄覆盖层的裂隙沉积基岩含水层上的社区。

Impactos de águas residuais em um aquífero sedimentar fraturado em Ontário, Canadá: implicações na proteção das fontes de água das Primeiras Nações

Resumo

Os impactos das águas residuais nas fontes de água potável indígenas são uma questão preocupante em todo o Canadá. Este estudo investigou os impactos das águas residuais sobre os recursos hídricos subterrâneos em uma reserva das Primeiras Nações localizada sobre um aquífero sedimentar fraturado vulnerável no sul de Ontário. Os objetivos foram examinar a variabilidade espaço-temporal de uma série de traçadores de águas residuais e sua movimentação para as águas subterrâneas. Os traçadores incluíram nitrato, E. coli, coliformes totais, e os adoçantes artificiais sucralose, acessulfame e ciclamato. Isótopos nas águas subterrâneas também foram examinados, incluindo trítio e isótopos de oxigênio e nitrogênio em nitrato inorgânico dissolvido. Três sistemas de monitoramento multinível (tubos contínuos de sete canais) foram readaptados em poços de água potável não utilizados na reserva e monitorados de dezembro de 2015 a novembro de 2016. Os resultados indicam que a água subterrânea à várias profundidades foi impactada pelos sistemas sépticos na reserva. As fraturas interceptadas pelos três poços readaptados contêm uma mistura de água de recarga recente e mais velha, e os picos de contaminantes nem sempre correspondem a portas alinhadas com trechos de maior condutividade hidráulica, indicando tempos de deslocamento variáveis para os compostos. A escolha de sistemas de gestão de águas residuais apropriados para o cenário hidrogeológico da reserva é crucial para fornecer água potável segura e limpa para as comunidades indígenas. Em particular, deve-se considerar especialmente as comunidades situadas nos aquíferos sedimentares fraturados com cobertura pouco espessa.

Notes

Acknowledgements

The authors would like to acknowledge our partner community, the Chippewas of Nawash Unceded First Nation, for their continued commitment to and support of this project. Thank you to Michele Desjardine for her ongoing community engagement work and fieldwork support. Thank you to the G360 Institute for Groundwater Research staff scientists for field and technical support with geophysical logging, interpretation and CMT designs, including Ryan Kroeker, Dr. Peter Pehme, and many others; to Steven Sadura for his guidance on CMT construction; to Dr. Stewart Hamilton and to Dr. Frank Brunton for support with lithological, isotopic, and geophysical interpretation; to Professor Chris Metcalfe at Trent University (Ontario) for his support with artificial sweetener analyses; to Joanne Ryks at the University of Guelph School of Engineering for laboratory and anion analysis support; and to Professor Kim Anderson and Professor Sherilee Harper for their continued support with Indigenous research methods.

Funding information

The authors would like to acknowledge Natural Sciences and Engineering Research Council of Canada, the Ontario Graduate Scholarship program, and the RBC Ontario Resource Field Program for providing funding for this research.

References

  1. Aboriginal Affairs and Northern Development Canada (AANDC) (2014) First Nations on-reserve source water protection plan: guide and template. AANDC, Gatineau, QBGoogle Scholar
  2. Alexander M, Berg S, Illman W (2011) Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Ground Water 49(3):365–382Google Scholar
  3. Allen AS (2013) Vulnerability of a fractured bedrock aquifer to emerging sewage-derived contaminants and their use as indicators of virus contamination. MSc Thesis, University of Guelph, Guelph, CanadaGoogle Scholar
  4. American Public Health Association (1992) Standard methods for the examinations of water and wastewater, 18th edn. American Public Health Association, Washington, DCGoogle Scholar
  5. Aravena R, Evans ML, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic tanks. Ground Water 31(2):180–186.  https://doi.org/10.1111/j.1745-6584.1993.tb01809.x Google Scholar
  6. Armstrong DK (1993) Paleozoic geology of the Central Bruce peninsula. Ontario Geological Survey Open File Report 5856, Queen’s Printer for Ontario, Kingston, ONGoogle Scholar
  7. Atkinson AP, Cartwright I, Gilfedder BS, Cendón DI, Unland NP, Hofmann H (2014) Using 14C and 3H to understand groundwater flow and recharge in an aquifer window. Hydrol Earth Syst Sci 18(12):4951–4964.  https://doi.org/10.5194/hess-18-4951-2014 Google Scholar
  8. Bales RC, Gerba CP, Grondin GH, Jensen SL (1989) Bacteriophage transport in sandy soil and fractured tuff. Appl Environ Microbiol 55(8):2061–2067Google Scholar
  9. Bassett R, Buszka P, Davidson G, Chongdiaz D (1995) Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol. 29(12):2915–2922.  https://doi.org/10.1021/es00012a005 Google Scholar
  10. Bedard-Haughn A, van Groenigen JW, van Kessel C (2003) Tracing 15N through landscapes: potential uses and precautions. J Hydrol 272:175–190Google Scholar
  11. Belan KP (2010) Characterizing a fractured rock aquifer with hydraulic testing at a contaminated municipal well using flexible liner methods and depth discrete monitoring. MSc Thesis, School of Engineering, University of Guelph, ON, CanadaGoogle Scholar
  12. Borchardt MA, Bradbury KR, Gotkowitz MB, Cherry JA, Parker BL (2007) Human enteric viruses in groundwater form a confined bedrock aquifer. Environ Sci Technol 41(18):6606–6612Google Scholar
  13. Borchardt MA, Bradbury KR, Alexander EC, Kolberg RJ, Alexander SC, Archer JR, Braatz LA, Forest BM, Green JA, Spencer SK (2011) Norovirus outbreak caused by a new septic system in a dolomite aquifer. Ground Water 49(1):85–97Google Scholar
  14. Bramburger AJ, Brown RS, Haley J, Ridal JJ (2015) A new, automated rapid fluorometric method for the detection of Escherichia coli in recreational waters. J Great Lakes Res 41(1):298–302.  https://doi.org/10.1016/j.jglr.2014.12.008 Google Scholar
  15. Brunton FR, Dodge JEP (2008) Karst of southern Ontario and Manitoulin Island. Ontario Geological Survey Groundwater Resources Study 5, Ontario Geological Survey, Sudbury, ONGoogle Scholar
  16. Brunton F, Brintnell C, Jin J, Bancroft A (2013) Stratigraphic architecture of the Lockport Group in Ontario and Michigan: a new interpretation of early Silurian ‘basin geometries’ & ‘Guelph pinnacle reefs. Annual conference of the Ontario Petroleum Institute, Niagara Falls, ON, 2013Google Scholar
  17. Buerge IJ, Has-Rudolf B, Kahle M, Müller MD, Poiger T (2009) Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environ Sci Technol 43(12):4381–4385.  https://doi.org/10.1021/es900126x Google Scholar
  18. Bukhari Z, Weihe J, Lechevallier M (2007) Rapid detection of Escherichia coli O157:H7 in water. Am Water Works Assoc 99(9):157–167Google Scholar
  19. Carrara C, Ptacek CJ, Robertson WD, Blowes DW, Moncur MC, Sverko E, Backus S (2008) Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ Sci Technol 42(8):2805–2811.  https://doi.org/10.1021/es070344q Google Scholar
  20. Chapman SW, Parker BL, Cherry JA, McDonald SD, Goldstein KJ, Frederick JJ, St Germain DJ, Cutt DM, Williams CE (2013) Combined MODFLOW-FRACTRAN application to assess chlorinated solvent transport and remediation in fractured sedimentary rock. Remediat J 23(3):7–35Google Scholar
  21. Charles KJ, Shore J, Sellwood J, Laverick M, Hart A, Pedley S (2009) Assessment of the stability of human viruses and coliphage in groundwater by PCR and infectivity methods. J Appl Microbiol 106(6):1827–1837Google Scholar
  22. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38(4):947–954.  https://doi.org/10.1016/j.watres.2003.10.058 Google Scholar
  23. Clark I, Aravena R (2005) Environmental isotopes in ground water resource and contaminant hydrogeology. National Ground Water Association Course no. 394, NGWA, 25–26 January, San Diego, CAGoogle Scholar
  24. Davis SN, Thompson GM, Bently HW, Stiles G (1980) Ground-water tracers: a short review. Ground Water 18(1):14–23Google Scholar
  25. Dekeyser L, Brunton FR, Endres AL, Armstrong DK, Coniglio M, Tetrault DK (2007) Ground-penetrating radar as a resource assessment tool for Silurian-age carbonate building stone quarries on the Bruce Peninsula, southern Ontario. Ontario Geol Surv Open File Rep 6212Google Scholar
  26. Egboka CBE, Cherry JA, Farvolden RN, Frind EO (1983) Migration of contaminants in groundwater at a landfill: a case study, 3.—tritium as an indicator of dispersion and recharge. J Hydrol 63(1–2):51–80.  https://doi.org/10.1016/0022-1694(83)90223-8
  27. Elmhirst LM, Novakowski KS (2012) The analysis of pulse interference tests conducted in a fractured rock aquifer bounded by a moving free surface. Adv Water Res 35:20–29.  https://doi.org/10.1016/j.advwatres.2011.10.002 Google Scholar
  28. Ens W, Senner F, Gygax B, Schlotterbeck G (2014) Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water. Anal Bioanal Chem 406(12):2789–2798.  https://doi.org/10.1007/s00216-014-7712-0 Google Scholar
  29. Fogg GE, Rolston DE, Decker DL, Louie DT, Grismer ME (1998) Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water 36(3):418–426Google Scholar
  30. Ford D, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  31. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  32. Galeriu D, Davis P, Raskob W, Melintescu A (2007) Tritium radioecology and dosimetry: today and tomorrow. 8th International Conference on Tritium Science and Technology, Rochester, NY, 16–21 September 2007Google Scholar
  33. Genivar (2011) Water feasibility study. Draft report, Genivar, Owen Sound, ONGoogle Scholar
  34. Gerba CP (1983) Republished (1999). Virus survival and transport in groundwater. J Ind Microbiol Biotechnol 22:535–539Google Scholar
  35. Gold AJ, Jacinthe PA, Groffman PM, Wright WR, Puffer RH (1998) Patchiness in groundwater nitrate removal in a riparian forest. J Environ Qual 27(1):146–155.  https://doi.org/10.2134/jeq1998.00472425002700010021x Google Scholar
  36. Goldstein KJ, Vitolins AR, Navon D, Parker BL, Chapman S, Anderson GA (2004) Characterization and pilot-scale studies for chemical oxidation remediation of fractured shale. Remediation 14(4):19–37Google Scholar
  37. Hamilton SM (2015) Ambient groundwater geochemistry data for southern Ontario, 2007–2014. Miscellaneous Release—Data 283–Revised, Ontario Geological Survey, Sudbury, ONGoogle Scholar
  38. Hamilton SM, Brunton FR, Priebe EH (2017) Regional-scale mapping of buried, surface-connected, karstic groundwater systems using dissolved CO2-O2 in groundwater. Proceedings from GeoOttawa 2017: the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, 1–4 October 2017Google Scholar
  39. Hart D (2008) Derived release limits guidance. COG technical report, COG-06-3090, COG, TorontoGoogle Scholar
  40. Health Canada (2018a) Short-term drinking water advisories: First Nations south of 60, Health Canada. https://wwwcanadaca/en/health-canada/topics/health-environment/water-quality-health/drinking-water/advisories-first-nations-south-60html. Accessed 14 May 2018
  41. Health Canada (2018b) Ending long-term drinking water advisories in First Nation communities. https://wwwaadnc-aandcgcca/eng/1506514143353/1506514230742. Accessed 14 May 2018
  42. Hill AR, Cardaci M (2004) Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Sci Soc Am J 68(1):320–325.  https://doi.org/10.2136/sssaj2004.3200 Google Scholar
  43. Hillebrand O, Nödler K, Licha T, Sauter M, Geyer T (2012) Caffeine as an indicator for the quantification of untreated wastewater in karst systems. Water Res 46(2):395–402Google Scholar
  44. Hillebrand O, Nödler K, Sauter M, Licha T (2015) Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer. Sci Total Environ 506-507:338–343Google Scholar
  45. Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93(6):1337–1344Google Scholar
  46. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576Google Scholar
  47. Krolik J, Maier A, Evans G, Belanger P, Hall G, Joyce A, Majury A (2013) A spatial analysis of private well water Escherichia coli contamination in southern Ontario. Geospat Health 8(1):65–75Google Scholar
  48. Lange FT, Scheurer M, Brauch H-J (2012) Artificial sweeteners: a recently recognized class of emerging environmental contaminants—a review. Anal Bioanal Chem 403(9):2503–2518.  https://doi.org/10.1007/s00216-012-5892-z Google Scholar
  49. Levison JK, Novakowski KS (2012) Rapid transport from the surface to wells in fractured rock: a unique tracer experiment. J Contam Hydrol 131(1–4):29–28Google Scholar
  50. Liu M, Alfa-Sika S-L, Tchakala I, Djaneye-Boundjou G, Chen H (2014) Tracking sources of groundwater nitrate contamination using nitrogen and oxygen stable isotopes at Beijing area, China. Environ Earth Sci 72(3):707–715.  https://doi.org/10.1007/s12665-013-2994-7 Google Scholar
  51. Lubianetzky TA, Dickson SE, Guo Y (2015) Proposed method: incorporation of fractured rock in aquifer vulnerability assessments. Environ Earth Sci 74(6):4813–4825Google Scholar
  52. Mackay D, Cherry J (1989) Groundwater contamination: pump-and-treat remediation. Environ Sci Technol 23(6):630–636Google Scholar
  53. Marshall RE, Levison JK, McBean EA, Brown E, Harper SL (2018) Source water protection programs and indigenous communities in Canada and the United States: a scoping review. J Hydrol 562:358–370.  https://doi.org/10.1016/j.jhydrol.2018.04.070 Google Scholar
  54. Mcmahon P, Chapelle F, Bradley P (2011) Evolution of redox processes in groundwater. ACS Symp Ser 1071:581–597.  https://doi.org/10.1021/bk-2011-1071.ch026 Google Scholar
  55. Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507.  https://doi.org/10.1016/j.jhydrol.2014.05.050 Google Scholar
  56. Metcalfe C, Hoque ME, Sultana T, Murray C, Helm P, Kleywegt S (2014) Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environ Sci Process Impacts 16(3):473–481.  https://doi.org/10.1039/C3EM00508A Google Scholar
  57. Moench AF (1997) Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer. Water Resour Res 33(6):1397–1407Google Scholar
  58. Mutch RD, Scott JI, Wilson DJ (1983) Cleanup of fractured rock aquifers: implications of matrix diffusion. Environ Monit Assess 24:45–70Google Scholar
  59. Neegan Burnside Ltd. (2011) National assessment of First Nations water and wastewater systems: national roll-up report. Report no. FGY163080.7, Department of Indian and Northern Affairs Canada, OttawaGoogle Scholar
  60. Nir A (1964) On the interpretation of tritium ‘age’ measurements of groundwater. J Geophys Res 69(12):2589–2595.  https://doi.org/10.1029/JZ069i012p02589 Google Scholar
  61. Nödler K, Tsakiri M, Aloupi M, Gatidou G, Stasinakis AS, Licha T (2016) Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment. Environ Pollut 211:282–290Google Scholar
  62. O’Connor DR (2002a) Report of the Walkerton inquiry: the events of May 2000 and related issues (part one). Ontario Ministry of the Attorney General. Queen’s Printer for Ontario, TorontoGoogle Scholar
  63. O’Connor DR (2002b) Report of the Walkerton inquiry: a strategy for safe drinking water (part two). Ontario Ministry of the Attorney General. Queen’s Printer for Ontario, TorontoGoogle Scholar
  64. Parker BL, Chapman SW, Cherry JA (2010) Plume persistence in fractured sedimentary rock after source zone removal. Ground Water 48(6):799–803Google Scholar
  65. Pathogen Detection Systems (2014) TECTA B-16 user guide 4.1. Report no. LIT-EN-090-07. https://b2b.vwrcanlab.com/store/asset?assetURI=https://b2b.vwrcanlab.com/stibo/hi_res/std.lang.all/48/80/14804880.pdf. Accessed 18 February 2018
  66. Persaud E, Levison J, Pehme P, Novakowski K, Parker B (2018) Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes. J Hydrol 556:233–246Google Scholar
  67. Reh R, Licha T, Nödler K, Geyer T, Sauter M (2015) Evaluation and application of organic micro-pollutants (OMPs) as indicators in karst system characterization. Environ Sci Pollut Res 22(6):4631–4643Google Scholar
  68. Robertson WD, Cherry JA (1989) Tritium as an indicator of recharge and dispersion in a groundwater system in central Ontario. Water Resour Res 25(6):1097–1109.  https://doi.org/10.1029/WR025i006p01097 Google Scholar
  69. Robertson WD, Van Stempvoort DR, Solomon DK, Homewood J, Brown SJ, Spoelstra J, Schiff SL (2013) Persistence of artificial sweeteners in a 15-year-old septic system plume. J Hydrol 477:43–54.  https://doi.org/10.1016/j.jhydrol.2012.10.048 Google Scholar
  70. Robertson WD, Van Stempvoort DR, Spoelstra J, Brown SJ, Schiff SL (2016) Degradation of sucralose in groundwater and implications for age dating contaminated groundwater. Water Res 88:653–660.  https://doi.org/10.1016/j.watres.2015.10.051 Google Scholar
  71. Schiperski F, Zirlewagen J, Hillebrand O, Nödler K, Licha T, Scheytt T (2015) Relationship between organic micropollutants and hydro-sedimentary processes at a karst spring in south-west Germany. Sci Total Environ 532:360–367Google Scholar
  72. Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Groundwater 37(3):405–410.  https://doi.org/10.1111/j.1745-6584.1999.tb01118.x Google Scholar
  73. Scheurer M, Brauch H-J, Lange FT (2009) Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal Bioanal Chem 394(6):1585–1594.  https://doi.org/10.1007/s00216-009-2881-y Google Scholar
  74. Singleton MJ, Woods KN, Conrad ME, DePaolo DJ, Dresel PE (2005) Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford site, WA. Environ Sci Technol. 39(10):3563–3570.  https://doi.org/10.1021/es0481070 Google Scholar
  75. Smith C (2018) 2017 environmental protection report. B-REP-07000-00010, Bruce Power, Tiverton, ONGoogle Scholar
  76. Solomon DK, Poreda RJ, Cook PG, Hunt A (1995) Site characterization using 3H/3He ground-water ages, Cape Cod, MA. Ground Water 33(6):988–996.  https://doi.org/10.1111/j.1745-6584.1995.tb00044.x Google Scholar
  77. Spoelstra J, Schiff SL, Brown SJ (2013) Artificial sweeteners in a large Canadian river reflect human consumption in the watershed. PLoS One 8(12):1–6.  https://doi.org/10.1371/journal.pone.0082706 Google Scholar
  78. Spoelstra J, Senger ND, Schiff SL (2017) Artificial sweeteners reveal septic system effluent in rural groundwater. J Environ Qual 46(6):1434–1443.  https://doi.org/10.2134/jeq2017.06.0233 Google Scholar
  79. Van Stempvoort DR, Robertson WD, Brown SJ (2011a) Artificial sweeteners in a large septic plume. Groundwater Monit Rem 31(4):95–102.  https://doi.org/10.1111/j.1745-6592.2011.01353.x Google Scholar
  80. Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2011b) Artificial sweeteners as potential tracers in groundwater in urban environments. J Hydrol 401(1–2):126–133.  https://doi.org/10.1016/j.jhydrol.2011.02.013 Google Scholar
  81. Van Stempvoort DR, Roy JW, Grabuski J, Brown SJ, Bickerton G, Sverko E (2013) An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater. Sci Total Environ 461–462:348–359.  https://doi.org/10.1016/j.scitotenv.2013.05.001 Google Scholar
  82. Williams CF, Adamsen FJ (2006) Sorption–desorption of carbamazepine from irrigated soils. J Environ Qual 35(5):1779–1783.  https://doi.org/10.2134/jeq2005.0345 Google Scholar
  83. Wolf L, Zwiener C, Zemann M (2012) Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Sci Total Environ 430:8–19.  https://doi.org/10.1016/j.scitotenv.2012.04.059 Google Scholar
  84. Wölz J, Grosshans K, Streck G, Schulze T, Rastall A, Erdinger L, Brack W, Fleig M, Kühlers D, Braunbeck T, Hollert H (2011) Estrogen receptor mediated activity in bankside groundwater, with flood suspended particulate matter and floodplain soil: an approach combining tracer substance, bioassay and target analysis. Chemosphere 85(5):717–723.  https://doi.org/10.1016/j.chemosphere.2011.05.060 Google Scholar
  85. World Health Organization (WHO) (2018) Strengthening operations & maintenance through water safety planning: a collection of case studies. Licence: CC BY-NC-SA 3.0 IGO, World Health Organization, GenevaGoogle Scholar
  86. Zirlewagen J, Licha T, Schiperski F, Nödler K, Scheytt T (2016) Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring. Sci Total Environ 547:356–365Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rachael E. Marshall
    • 1
    Email author
  • Jana Levison
    • 1
  • Edward A. McBean
    • 1
  • Beth Parker
    • 1
  1. 1.School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations