Advertisement

Hydrogeology Journal

, Volume 27, Issue 7, pp 2707–2718 | Cite as

Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China

  • Zhitong Ma
  • Wenke WangEmail author
  • Zaiyong Zhang
  • Philip Brunner
  • Zhoufeng Wang
  • Li Chen
  • Ming Zhao
  • Chengcheng Gong
Report
  • 166 Downloads

Abstract

In semiarid and arid regions, the evaporation from bare soil is highly sensitive to changes in the depth to the water table. This study quantifies the relation between water-table depth and the groundwater contribution to evaporation in the Ordos Basin in China. In-situ field experiments were combined with numerical simulations of heat, vapor and liquid water flow. Based on lysimeter experiments and a calibrated numerical model, a relation between depth to groundwater and evaporation rate was established for the lysimeter site. In addition, a sensitivity analysis considering the hydraulic conductivity and the inverse of the air-entry pressure (van Genuchten α) was established. For the field site, the results showed that for the water-table depths less than 52 cm below the ground, evaporation is independent of the water-table depth. For water-table depths exceeding 52 cm, an exponential relation between depth to groundwater and evaporation is observed. No phreatic evaporation occurs for water tables deeper than 105 cm, which is nearly two times the capillary fringe height. The sensitivity analysis showed that the extinction depth decreased with decreasing hydraulic conductivity and increased with α. The field-specific results and the sensitivity analysis provide valuable information to understand the dynamic processes of soil evaporation in the Ordos Basin. From a methodological point of view, the proposed modelling approach and the integration of lysimeter data proved to be a highly efficient combination to study evaporation dynamics in semi-arid and arid environments.

Keywords

Soil evaporation Extinction depth Numerical modelling Lysimeter Arid-region 

Evaluation de l’évaporation sur sol nu pour différentes profondeurs de la surface libre de la nappe, en utilisant des lysimètres et un modèle numérique dans le Bassin d’Ordos, Chine

Résumé

Dans les régions semi arides et arides, l’évaporation sur sol nu est extrêmement sensible aux variations de la profondeur de la surface libre de la nappe. La présente étude évalue quantitativement la relation entre la profondeur de la surface libre de la nappe et la contribution de l’eau souterraine à l’évaporation dans le Bassin d’Ordos en Chine. Les mesures de terrain in situ ont été combinées à des simulations numériques de l’écoulement de chaleur, de vapeur et d’eau liquide. Sur la base d’essais sur lysimètres et d’un modèle numérique calé, une relation entre la profondeur des eaux souterraines et le taux d’évaporation a été établie pour le site lysimétrique. De plus, une analyse de sensibilité prenant en compte la conductivité hydraulique et l’inverse de la pression d’entrée de l’air (le α de van Genuchten) a été établie. Pour le site de terrain, les résultats ont montré que pour des profondeurs de la surface libre inférieures à 52 cm sous le sol, l’évaporation est indépendante de la profondeur de la surface libre de la nappe. Pour des profondeurs de la surface libre de la nappe supérieures à 52 cm, une relation exponentielle entre la profondeur de l’eau souterraine et l’évaporation est observée. Aucune évaporation phréatique ne se produit pour des surfaces de la nappe au delà de 105 cm, ce qui est à peu près deux fois la hauteur de la frange capillaire. L’analyse de sensibilité a montré que la profondeur d’annulation décroît quand la conductivité hydraulique diminue et croît avec α. Les résultats spécifiques au terrain et l’analyse de sensibilité fournissent des informations précieuses pour comprendre les processus dynamiques de l’évaporation de sol dans le Bassin d’Ordos. Du point de vue méthodologique, l’approche proposée pour la modélisation et l’intégration de données lysimétriques se sont révélées être une façon très efficace d’étudier la dynamique de l’évaporation dans des environnements semi arides et arides.

Evaluación de la evaporación del suelo desnudo desde diferentes profundidades de la capa freática utilizando lisímetros y un modelo numérico en la Cuenca de Ordos, China

Resumen

En las regiones semiáridas y áridas, la evaporación del suelo desnudo es altamente sensible a los cambios en la profundidad de la capa freática. Este estudio cuantifica la relación entre la profundidad de la capa freática y la contribución de las aguas subterráneas a la evaporación en la Cuenca de Ordos en China. Los experimentos de campo in situ se combinaron con simulaciones numéricas de calor, vapor y flujo de agua líquida. Basándose en experimentos con lisímetros y un Modelo numérico calibrado, se estableció una relación entre la profundidad del agua subterránea y la tasa de evaporación Para el sitio del lisímetro. Además, se estableció un análisis de sensibilidad considerando la conductividad hidráulica y la inversa de la presión de entrada de aire (van Genuchten α). Para el sitio de campo, los resultados mostraron que, Para las profundidades de la capa freática a menos de 52 cm por debajo del nivel del suelo, la evaporación es independiente de la profundidad de la capa freática. Para profundidades de la capa freática superiores a 52 cm, se observa una relación exponencial entre la profundidad del agua subterránea y la evaporación. No se produce evaporación freática en las capas freáticas de más de 105 cm de profundidad, que es casi el doble de la Altura de la franja capilar. El análisis de sensibilidad mostró que la profundidad de extinción disminuía con la disminución de la conductividad hidráulica y aumentaba con α. Los resultados específicos de campo y el análisis de sensibilidad proporcionan información valiosa Para entender los procesos dinámicos de evaporación del suelo en la Cuenca de Ordos. Desde un punto de vista metodológico, el enfoque de modelización propuesto y la integración de los datos del lisímetro resultaron ser un enfoque muy eficaz Para estudiar la dinámica de la evaporación en ambientes semiáridos y áridos.

利用蒸渗仪和数值模型评估中国鄂尔多斯盆地不同水位深度的裸土蒸发

摘要

在半干旱和干旱地区, 裸土蒸发对地下水位埋深的变化非常敏感。本研究量化了中国鄂尔多斯盆地地下水位埋深与地下水对蒸发贡献之间的关系。现场实验与考虑热, 蒸汽和液体流的数值模拟相结合。利用蒸渗仪试验和识别后的数值模型在蒸渗仪场地建立了地下水位埋深与蒸发率之间的关系。此外, 建立了考虑渗透系数和进气压力倒数(van Genuchten α)的灵敏度分析。现场案例的结果表明, 对于距离地面不到52 cm的水位埋深, 蒸发与水位埋深无关。对于超过52 cm的水位埋深, 观察到地下水位埋深与蒸发之间的指数关系。对于埋深超过105 cm的地下水位, 没有发生潜水蒸发, 这基本是毛细管边缘高度的两倍。敏感性分析表明, 极限深度随渗透系数的降低而降低, 随α的增加而增大。具体场地案例结果和敏感性分析为了解鄂尔多斯盆地土壤蒸发的动态过程提供了有价值的信息。从方法论的角度来看, 所提出的建模方法和蒸渗仪数据同被证明是半干旱和干旱区蒸发动力学研究的高效方法.

Avaliando a evaporação do solo nu de diferentes profundidades do lençol freático usando lisímetros e um modelo numérico na Bacia de Ordos, China

Resumo

Nas regiões semiáridas e áridas, a evaporação do solo nu é altamente sensível a mudanças na profundidade do lençol freático. Este estudo quantifica a relação entre a profundidade do lençol freático e a contribuição das águas subterrâneas Para a evaporação na Bacia de Ordos, na China. Experimentos de campo in situ foram combinados com simulações numéricas de fluxo de calor, vapor e líquido. Com base em experimentos com lisímetros e um Modelo numérico calibrado, uma relação entre a profundidade das águas subterrâneas e a taxa de evaporação foi estabelecida Para o local do lisímetro. Além disso, uma análise de sensibilidade considerando a condutividade hidráulica e o inverso da pressão de entrada de ar (van Genuchten α) foi estabelecida. Para o campo, os resultados mostraram que, Para as profundidades do lençol freático a menos de 52 cm abaixo do solo, a evaporação é independente da profundidade do lençol freático. Para profundidades do lençol freático superiores a 52 cm, observa-se uma relação exponencial entre a profundidade da água subterrânea e a evaporação. Nenhuma evaporação freática ocorre Para lençóis freáticos com profundidade superior a 105 cm, que é quase duas vezes a Altura da franja capilar. A análise de sensibilidade mostrou que a profundidade de extinção diminuiu com a diminuição da condutividade hidráulica e aumentou com α. Os resultados específicos do campo e a análise de sensibilidade fornecem informações valiosas Para entender os processos dinâmicos de evaporação do solo na Bacia de Ordos. Do ponto de vista metodológico, a abordagem de modelagem proposta e a integração de dados lisimétricos mostraram-se uma abordagem altamente eficiente Para o estudo da dinâmica de evaporação em ambientes semiáridos e áridos.

Notes

Acknowledgements

We greatly appreciate the constructive feedback and comments from the three reviewers and the editor.

Funding information

This research was supported by the National Natural Science Foundation of China (Nos. U1603243, 41230314).

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper no. 56. FAO, RomeGoogle Scholar
  2. An K, Wang W, Zhao Y, Huang W, Chen L, Zhang Z, Wang Q, Li W (2016) Estimation from soil temperature of soil thermal diffusivity and heat flux in sub-surface layers. Boundary-Layer Meteorol 158(3):473–488.  https://doi.org/10.1007/s10546-015-0096-7 CrossRefGoogle Scholar
  3. An K, Wang W, Wang Z, Zhao Y, Yang Z, Chen L, Zhang Z, Duan L (2017) Estimation of ground heat flux from soil temperature over a bare soil. Theoretic Appl Climatol 129(3–4):913–922.  https://doi.org/10.1007/s00704-016-1816-8 CrossRefGoogle Scholar
  4. Assouline S, Tyler SW, Selker JS, Lunati I, Higgins CW, Parlange MB (2013) Evaporation from a shallow water table: diurnal dynamics of water and heat at the surface of drying sand. Water Resour Res 49:4022–4034.  https://doi.org/10.1002/wrcr.20293 CrossRefGoogle Scholar
  5. Baldocchi DD, Xu L (2007) What limits evaporation from Mediterranean oak woodlands, the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv Water Resour 30(10):2113–2122.  https://doi.org/10.1016/j.advwatres.2006.06.013 CrossRefGoogle Scholar
  6. Balugani E, Lubczynski MW, Metselaar K (2016) A framework for sourcing of evaporation between saturated and unsaturated zone in bare soil condition. Int Assoc Sci Hydrol Bull 61(11):1981–1995.  https://doi.org/10.1080/02626667.2014.966718 CrossRefGoogle Scholar
  7. Balugani E, Lubczynski MW, Reyes-Acosta L, dTC V, Francés AP, Metselaar K (2017) Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. J Hydrol 547:54–66.  https://doi.org/10.1016/j.jhydrol.2017.01.042 CrossRefGoogle Scholar
  8. Banimahd SA, Zand-Parsa S (2013) Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium. Agric Water Manag 130:168–177.  https://doi.org/10.1016/j.agwat.2013.08.022 CrossRefGoogle Scholar
  9. Brunner P, Li HT, Kinzelbach W, Li WP (2007) Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int J Remote Sens 28(15):3341–3361.  https://doi.org/10.1080/01431160600928641 CrossRefGoogle Scholar
  10. Brunner P, Li HT, Kinzelbach W, Li WP, Dong XG (2008) Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour Res 44:1291–1295.  https://doi.org/10.1029/2007WR006063 CrossRefGoogle Scholar
  11. Brutsaert W (2014) The daily mean zero flux plane during soil controlled evaporation: a Green’s function approach. Water Resour Res 50(12):9405–9413.  https://doi.org/10.1002/2014WR016111 CrossRefGoogle Scholar
  12. Chen L, Wang W, Zhang Z, Wang Z, Wang Q, Zhao M, Gong C (2018) Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China. Hydrogeol J 4:1–12.  https://doi.org/10.1007/s10040-018-1774-6 CrossRefGoogle Scholar
  13. Chung SO, Horton R (1987) Soil heat and water flow with a partial surface mulch. Water Resour Res 23:2175–2186.  https://doi.org/10.1029/WR023i012p02175 CrossRefGoogle Scholar
  14. de Vries DA (1958) Simultaneous transfer of heat and moisture in porous media. Trans Am Geophys Union 39:2175–2186CrossRefGoogle Scholar
  15. de Vries DA (1963) The thermal properties of soils, In Physics of Plant Environment, edited by R. W. van Wijk, pp. 210-235, North Holland, AmsterdamGoogle Scholar
  16. Doble RC, Crosbie RS (2017) Review: current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol J 25:3–23.  https://doi.org/10.1007/s10040-016-1470-3 CrossRefGoogle Scholar
  17. Doble R, Simmons C, Jolly I, Walker G (2006) Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia. J Hydrol 329:75–97.  https://doi.org/10.1016/j.jhydrol.2006.02.007 CrossRefGoogle Scholar
  18. Doble RC, Pickett T, Crosbie RS, Morgan LK, Turnadge C, Davies PJ (2017) Emulation of recharge and evapotranspiration processes in shallow groundwater systems. J Hydrol 555:894–908.  https://doi.org/10.1016/j.jhydrol.2017.10.065 CrossRefGoogle Scholar
  19. Fahle M, Dietrich O (2014) Estimation of evapotranspiration using diurnal groundwater level fluctuations: comparison of different approaches with groundwater lysimeter data. Water Resour Res 50(1):273–286.  https://doi.org/10.1002/2013WR014472 CrossRefGoogle Scholar
  20. Gardner WR (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232.  https://doi.org/10.1097/00010694-195804000-00006 CrossRefGoogle Scholar
  21. Gardner WR, Fireman M (1958) Laboratory studies of evaporation from soil columns in the presence of a water table. Soil Sci 85(5):244–249.  https://doi.org/10.1097/00010694-195805000-00002 CrossRefGoogle Scholar
  22. Gowing JW, Konukcu F, Rose DA (2006) Evaporative flux from a shallow water table: the influence of a vapour–liquid phase transition. J Hydrol 321:77–89.  https://doi.org/10.1016/j.jhydrol.2005.07.035 CrossRefGoogle Scholar
  23. Hernández-López MF, Gironás J, Braud I, Suárez F, Muñoz JF (2014) Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels. Hydrol Process 28:3655–3669.  https://doi.org/10.1002/hyp.9912 CrossRefGoogle Scholar
  24. Hillel D (1998) Entry of water into soil. In: Environmental soil physics. Academic, San Diego, pp 385–426Google Scholar
  25. Huang J, Zhou Y, Hou R, Wenninger J (2015) Simulation of water use dynamics by Salix bush in a semiarid shallow groundwater area of the Chinese Erdos plateau. Water 7:6999–7021.  https://doi.org/10.3390/w7126671 CrossRefGoogle Scholar
  26. Johnson JE, Yáñez J, Ortiz C, Muñoz J (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol Sci J 55(4):624–635CrossRefGoogle Scholar
  27. Kamai T, Assouline S (2018) Evaporation from deep aquifers in arid regions: analytical model for combined liquid and vapor water fluxes. Water Resour Res 54.  https://doi.org/10.1029/2018WR023030 CrossRefGoogle Scholar
  28. Kamai T, Weisbrod N, Dragila MI (2009) Impact of ambient temperature on evaporation from surface-exposed fractures. Water Resour Res 45(2):325–336.  https://doi.org/10.1029/2008WR007354 CrossRefGoogle Scholar
  29. Lehmann P, Assouline S, Or D (2008) Characteristic lengths affecting evaporative drying of porous media. Phys Rev E Stat Nonlinear Soft Matter Phys 77:056309.  https://doi.org/10.1103/PhysRevE.77.056309 CrossRefGoogle Scholar
  30. Li HT, Kinzelbach W, Brunner P, Li WP, Dong XG (2008) Topography representation methods for improving evaporation simulation in groundwater modeling. J Hydraul 356:1–2CrossRefGoogle Scholar
  31. Liu T, Liu L, Luo Y, Lai J (2015) Simulation of groundwater evaporation and groundwater depth using SWAT in the irrigation district with shallow water table. Environ Earth Sci 74:315–324.  https://doi.org/10.1007/s12665-015-4034-2 CrossRefGoogle Scholar
  32. Milly PCD (1982) Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resour Res 18:489–498.  https://doi.org/10.1029/WR018i003p00489 CrossRefGoogle Scholar
  33. Nazarieh F, Ansari H, Ziaei AN, Izady A, Davari K, Brunner P (2018) Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region. Hydrogeol J.  https://doi.org/10.1007/s10040-018-1789-z CrossRefGoogle Scholar
  34. Nimmo JR, Deason JA, Izbicki JA, Martin P (2002) Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin site. Water Resour Res 38(10):1215.  https://doi.org/10.1029/2001WR000735 CrossRefGoogle Scholar
  35. Philip JR (1957) Evaporation, and moisture and heat fields in the soil. J Meteorol 14:354–366.  https://doi.org/10.1175/1520-0469(1957)014<0354:eamahf>2.0.co;2 CrossRefGoogle Scholar
  36. Philip JR, de Vries DA (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38(2):222–232CrossRefGoogle Scholar
  37. Ripple CD, Rubin J, Van Hylckama TEA (1970) Estimating steady-state evaporation rates from bare soils under conditions of high water table. http://pubs.er.usgs.gov/publication/70047724. Accessed June 2019
  38. Sadeghi M, Shokri N, Jones SB (2012) A novel analytical solution to steady-state evaporation from porous media. Water Resour Res 48(9):9516.  https://doi.org/10.1029/2012WR012060 CrossRefGoogle Scholar
  39. Saito H, Šimůnek J, Mohanty BP (2006) Numerical analysis of coupled water vapor, and heat transport in the vadose zone. Vadose Zone J 5:784–800.  https://doi.org/10.2136/vzj2006.0007 CrossRefGoogle Scholar
  40. Salvucci GD (1997) Soil and moisture independent estimation of stage-2 evaporation from potential evaporation and albedo or surface temperature. Water Resour Res 33(1):111–122.  https://doi.org/10.1029/96WR02858 CrossRefGoogle Scholar
  41. Scanlon BR, Keese K, Reedy RC, Simunek J, Andraski BJ (2003) Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resour Res 39(7):1179.  https://doi.org/10.1029/2002WR001604 CrossRefGoogle Scholar
  42. Selim T, Bouksila F, Berndtsson R, Persson M (2013) Soil water and salinity distribution under different treatments of drip irrigation. Soil Sci Soc Am J 77:1144–1156.  https://doi.org/10.2136/sssaj2012.0304 CrossRefGoogle Scholar
  43. Selker JS (2017) Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers. Water Resour Res 53(6):4562–4563.  https://doi.org/10.1002/2017WR021014 CrossRefGoogle Scholar
  44. Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329–338CrossRefGoogle Scholar
  45. Shang H, Wang W, Dai Z, Duan L, Zhao Y, Zhang J (2016) An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J Hydrol 543:386–394.  https://doi.org/10.1016/j.jhydrol.2016.10.012 CrossRefGoogle Scholar
  46. Simunek J (2005) The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media. HYDRUS Software Series 1, HYDRUS, https://www.pc-progress.com/en/Default.aspx?h3d-ver2. Accessed June 2019
  47. Simunek J, van Genuchten MT, Sejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 72(9):587–600.  https://doi.org/10.2136/vzj2007.0077 CrossRefGoogle Scholar
  48. Song W, Cui Y, Tang AM, Ding W, Tran TD (2014) Experimental study on water evaporation from sand using environmental chamber. Adv Water Sci 51(2):115–128.  https://doi.org/10.1139/cgj-2013-0155 CrossRefGoogle Scholar
  49. Soylu M, Istanbulluoglu E, Lenters J, Wang T (2011) Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region. Hydrol Earth Syst Sci 15:787–806CrossRefGoogle Scholar
  50. Talsma T (1963) The control of saline groundwater. Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 68 pp. http://edepot.wur.nl/185086. Accessed June 2019
  51. Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898.  https://doi.org/10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  52. Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002) Deep arid system hydrodynamics 1: equilibrium states and response times in thick desert vadose zones. Water Resour Res 38(12):1308.  https://doi.org/10.1029/2001WR000824 CrossRefGoogle Scholar
  53. Wang W, Li Y, Yang F, Hou L, Zhao G, Li J (2011a) Experimental and numerical study of coupled flow and heat transport. Water Manag 164:533–547.  https://doi.org/10.1680/wama.10.00088 CrossRefGoogle Scholar
  54. Wang W, Li J, Feng X, Chen X, Yao K (2011b) Evolution of stream–aquifer hydrologic connectedness during pumping: experiment. J Hydrol 402:401–414.  https://doi.org/10.1016/j.jhydrol.2011.03.033 CrossRefGoogle Scholar
  55. Wang W, Zhang Z, Yeh TCJ, Qiao G, Wang W, Duan L, Huang SY, Wen JC (2017) Flow dynamics in vadose zones with and without vegetation in an arid region. Adv Water Resour 106.  https://doi.org/10.1016/j.advwatres.2017.03.011 CrossRefGoogle Scholar
  56. Yamanaka T, Yonetani T (1999) Dynamics of the evaporation zone in dry sandy soils. J Hydrol 217(1–2):135–148.  https://doi.org/10.1016/S0022-1694(99)00021-9 CrossRefGoogle Scholar
  57. Zhang Z, Wang W, Wang Z, Chen L, Gong C (2018) Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos plateau, China. Hydrogeol J 26:1683–1691.  https://doi.org/10.1007/s10040-018-1751-0 CrossRefGoogle Scholar
  58. Zhang Z, Wang W, Gong C, Wang Z, Duan L, Yeh TCL, Yu P (2019) Evaporation from seasonally frozen bare and vegetated ground at various groundwater table depths in the Ordos Basin, Northwest China. Hydrol Process.  https://doi.org/10.1002/hyp.13404 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhitong Ma
    • 1
    • 2
  • Wenke Wang
    • 1
    • 2
    Email author
  • Zaiyong Zhang
    • 1
    • 2
  • Philip Brunner
    • 3
  • Zhoufeng Wang
    • 1
    • 2
  • Li Chen
    • 1
    • 2
  • Ming Zhao
    • 1
    • 2
  • Chengcheng Gong
    • 1
    • 2
  1. 1.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid RegionChang’an University, Ministry of EducationChang’anPeople’s Republic of China
  2. 2.School of Environmental Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China
  3. 3.Center for Hydrogeology and Geothermics, (CHYN)Université de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations