Advertisement

Hydrogeology Journal

, Volume 27, Issue 7, pp 2447–2470 | Cite as

Do groundwater management plans work? Modelling the effectiveness of groundwater management scenarios

  • E. K. WhiteEmail author
  • J. Costelloe
  • T. J. Peterson
  • A. W. Western
  • E. Carrara
Paper
  • 261 Downloads

Abstract

In contrast to management optimisation methods, which quantify decision variables to create plans, this study does not seek the “best” strategy. Instead, it simulates the sequential decision-making process implicit in environmental management, so that the effectiveness of management scenarios, when implemented as intended, can be evaluated. The purpose was to develop a methodology to quantitatively evaluate the effectiveness of groundwater management plans by simulating sequential management decisions that evolve based on aquifer/management feedback. A groundwater management scheme was structured as a system control loop to capture the aquifer/management feedback, and management decisions were based on realistically sparse observation times and locations. The method indicates how a plan may proceed in reality under alternate timings and frequencies of management decisions and in systems with differing response times. A synthetic example quantified the impact of a generic plan, specifying environmental objectives, extraction restrictions and entitlement limits (maximum volume/year that users are permitted), relative to no-management by combining a numerical model of “reality” with management rules under a stochastic climate. The management decision-making frequency varied from daily to decadal. Generally, effectiveness decreased as the interval between management interventions increased and intervals greater than annual showed minimal improvement compared to entitlement only. The timing of management decisions relative to the irrigation season also impacted plan effectiveness, and when decisions were made prior to the irrigation season, quarterly management was less effective than annual and biannual management. By testing the capacity of plans to achieve objectives, groundwater management can be systematically and objectively improved.

Keywords

Groundwater management Numerical modelling Water resources conservation Groundwater protection 

Les plans de gestion des eaux souterraines fonctionnent-ils? Modélisation de l’efficacité des scénarios de gestion des eaux souterraines

Résumé

Contrairement aux méthodes d’optimisation de la gestion, qui quantifient les variables décisionnelles pour créer des plans, cette étude ne cherche pas la “meilleure” stratégie. Au lieu de cela, il simule le processus décisionnel séquentiel implicite dans la gestion de l’environnement, de sorte que l’efficacité des scénarios de gestion, lorsqu’il est mis en œuvre comme prévu, peut être évaluée. L’objectif était d’élaborer une méthodologie pour évaluer quantitativement l’efficacité des plans de gestion des eaux souterraines en simulant des décisions de gestion séquentielles qui évoluent en fonction des informations en retour sur le couple aquifère/gestion. Un schéma de gestion des eaux souterraines a été structuré comme une boucle de contrôle du système pour capturer les informations en retour de l’aquifère et de la gestion, et les décisions de gestion étaient fondées sur des temps et des lieux d’observation clairsemés de manière réaliste. La méthode indique comment un plan peut se dérouler en réalité dans le cadre d’autres références temporelles et fréquences des décisions de gestion et dans des systèmes avec des temps de réponse différents. Un exemple synthétique a quantifié l’impact d’un plan générique, en précisant les objectifs environnementaux, les restrictions de prélèvements et les limites de droits (volume maximal/année que les utilisateurs sont autorisés), par rapport à l’absence de gestion en combinant un modèle numérique de “la réalité” avec des règles de gestion sous des conditions climatiques stochastiques. La fréquence de prise de décision de gestion variait entre du journalier et du décennal. En général, l’efficacité a diminué à mesure que l’intervalle entre les interventions de gestion augmentait et que les intervalles supérieurs à l’année montraient une amélioration minime par rapport au seul respect des obligations de droit. La programmation dans le temps des décisions de gestion par rapport à la saison d’irrigation a également impacté l’efficacité du plan, et lorsque les décisions ont été prises avant la saison d’irrigation, la gestion trimestrielle a été moins efficace que la gestion annuelle ou semestrielle. En testant la capacité des plans de gestion d’atteindre les objectifs, la gestion des eaux souterraines peut être de manière systématique et objective améliorée.

¿Funcionan los planes de manejo de aguas subterráneas? Modelado de la eficacia de los escenarios de manejo de las aguas subterráneas

Resumen

A diferencia de los métodos de optimización del manejo, que cuantifican las variables de decisión para crear planes, este estudio no busca la mejor estrategia. En cambio, simula el proceso secuencial de toma de decisiones implícito en la gestión ambiental, de modo que se pueda evaluar la eficacia de los escenarios de manejo, cuando se implementan según lo previsto. El propósito era desarrollar una metodología para evaluar cuantitativamente la efectividad de los planes de manejo de aguas subterráneas mediante la simulación de decisiones de manejo secuencial que evolucionan en base a la retroalimentación acuífero/manejo. Se estructuró un esquema de manejo de aguas subterráneas como un circuito de control del sistema para captar la retroalimentación sobre acuífero/manejo, y las decisiones de manejo se basaron en tiempos y lugares de observación realistas. El método indica cómo un plan puede proceder en la realidad bajo tiempos y frecuencias alternas de decisiones de gestión y en sistemas con diferentes tiempos de respuesta. Un ejemplo sintético cuantificó el impacto de un plan genérico, especificando los objetivos medioambientales, las restricciones de extracción y los límites de los derechos (volumen máximo/año que se permite a los usuarios), en relación con la no gestión, combinando un modelo numérico de realidad con reglas de gestión en un clima estocástico. La frecuencia de la toma de decisiones de gestión variaba de un día para otro a una década. En general, la efectividad disminuyó a medida que aumentó el intervalo entre las intervenciones de tratamiento y los intervalos mayores que los anuales mostraron una mejoría mínima en comparación con el derecho solamente. El momento en que se tomaron las decisiones de manejo en relación con la temporada de riego también afectó la efectividad del plan, y cuando las decisiones se tomaron antes de la temporada de riego, el manejo trimestral fue menos efectivo que el manejo anual y bianual. Al probar la capacidad de los planes para lograr los objetivos, la gestión de las aguas subterráneas puede mejorarse de manera sistemática y objetiva.

地下水管理方案是否有效?模拟地下水管理方案的有效性

摘要

与定量化决策变量以创建方案的管理优化方法相比,本研究不寻求“最佳”策略。相反,它模拟了隐含环境管理的序贯决策过程,因此可以评估管理方案按预期实施的有效性。本研究的目的是通过模拟基于含水层/管理反馈的序贯管理决策研发一种定量评估地下水管理方案有效性的方法。通过系统控制循环构建地下水管理方案以捕获含水层/管理反馈,管理决策是基于实际稀少的观测时间和位置。该方法显示一种方案如何在管理决策的备选时间和频率下以及在具有不同响应时间的系统中实际进行。综合案例通过结合“现实”的数值模型与随机气候的管理规则,量化了相对于无管理的通用方案的影响,同时确定了环境目标、开采限制和权限(允许用户的最大数量/年)。管理决策的频率从每日到数十天不等。一般而言,有效性随着管理干预措施之间的间隔增加而减少,而且仅与有权限相比,大于年的间隔有小的改善。与灌溉季节相关的管理决策时间也影响了方案的有效性,并且当在灌溉季节之前作出决策时,季度管理的效果低于年度和一年两次的管理。通过测试实现目标的方案可行性,系统地和客观地改进了地下水管理。

Os planos de gestão das águas subterrâneas funcionam? Modelando a eficácia dos cenários de gerenciamento de águas subterrâneas

Resumo

Ao contrário dos métodos de otimização de gerenciamento, que quantificam variáveis ​​de decisão para criar planos, este estudo não busca a “melhor” estratégia. Em vez disso, simula o processo de tomada de decisão sequencial implícito no gerenciamento ambiental, de modo que a eficácia dos cenários de gerenciamento, quando implementados como pretendido, possa ser avaliada. O objetivo foi desenvolver uma metodologia para avaliar quantitativamente a eficácia dos planos de gerenciamento de águas subterrâneas, simulando decisões de gerenciamento sequenciais que evoluem com base no feedback dos aquíferos/gestão. Um esquema de gerenciamento de águas subterrâneas foi estruturado como um loop de controle do sistema para capturar o feedback do aquífero/gestão, e as decisões de gerenciamento foram baseadas em tempos e locais de observação realisticamente esparsos. O método indica como um plano pode proceder na realidade em horários e frequências alternadas de decisões de gerenciamento e em sistemas com diferentes tempos de resposta. Um exemplo sintético quantificou o impacto de um plano genérico, especificando objetivos ambientais, restrições de extração e limites de direitos (volume máximo/ano permitido aos usuários), em relação ao não gerenciamento combinando um modelo numérico de “realidade” com regras de gerenciamento sob um clima estocástico. A frequência de tomada de decisão gerencial variou de diária a decadal. Geralmente, a eficácia diminuiu à medida que o intervalo entre as intervenções de gestão aumentou e os intervalos maiores do que os anuais mostraram uma melhora mínima em comparação com o direito apenas. O momento das decisões de gestão relativas à época de irrigação também teve impacto na eficácia do plano e, quando as decisões foram tomadas antes da época de irrigação, a gestão trimestral foi menos eficaz do que a gestão anual e bianual. Testando a capacidade dos planos para atingir os objetivos, a gestão das águas subterrâneas pode ser sistemática e objetivamente melhorada.

Notes

Acknowledgements

Climate data used in this study can be found on the AWAP (Australian Water Availability Project) database.

Funding information

The authors acknowledge Australian Research Council Linkage Project LP130100958 and funding partners, Bureau of Meteorology (BoM) and the Department of Environment, Land, Water and Planning (DELWP) for valuable contributions.

References

  1. Ahlfeld D, Heidari M (1994) Applications of optimal hydraulic control to ground‐water systems. J Water Resour Plan Manag 120(3):350–365.  https://doi.org/10.1061/(ASCE)0733-9496(1994)120:3(350) CrossRefGoogle Scholar
  2. Ahlfeld DP, Hoque Y (2008) Impact of simulation model solver performance on ground water management problems. Groundwater 46(5):716–726.  https://doi.org/10.1111/j.1745-6584.2008.00454.x CrossRefGoogle Scholar
  3. Ahlfeld DP, Mulligan AE (2000) Optimal management of flow in groundwater systems. Academic, San DiegoGoogle Scholar
  4. Ahlfeld D, Barlow PM, Mulligan AE (2005) GWM: a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000). US Geological Survey, Reston, VAGoogle Scholar
  5. Ahn H (2000) Ground water drought management by a feedforward control method 1. JAWRA 36(3):501–510CrossRefGoogle Scholar
  6. Alley WM (2016) Drought-proofing groundwater. Groundwater 54(3):309–309.  https://doi.org/10.1111/gwat.12418 CrossRefGoogle Scholar
  7. Alley WM, Healy RW, LaBaugh JW, Reilly TE (2002) Flow and storage in groundwater systems. Science 296(5575):1985–1990.  https://doi.org/10.1126/science.1067123 CrossRefGoogle Scholar
  8. Anderies JM, Rodriguez AA, Janssen MA, Cifdaloz O (2007) Panaceas, uncertainty, and the robust control framework in sustainability science. Proc Natl Acad Sci 104(39):15194–15199CrossRefGoogle Scholar
  9. Andricevic R (1990) A real-time approach to management and monitoring of groundwater hydraulics. Water Resour Res 26(11):2747–2755.  https://doi.org/10.1029/WR026i011p02747 CrossRefGoogle Scholar
  10. Astrom KJ, Murray RM (2008) Feedback systems, an introduction for scientists and engineers. Princeton University Press, Princeton, NJGoogle Scholar
  11. Åström KJ, Wittenmark B (2008) Adaptive control: Dover, Mineola, NYGoogle Scholar
  12. Bakker M, Post V, Langevin CD, Hughes JD, White JT, Starn JJ, Fienen MN (2016) Scripting MODFLOW model development using Python and FloPy. Groundwater.  https://doi.org/10.1111/gwat.12413 CrossRefGoogle Scholar
  13. Banta ER, Ahlfeld DP (2013) GWM-VI: groundwater management with parallel processing for multiple MODFLOW versions. US Geol Surv Techniques Methods 6-A48Google Scholar
  14. Barthel R, Foster S, Villholth KG (2017) Interdisciplinary and participatory approaches: the key to effective groundwater management. Hydrogeol J 25(7):1923–1926.  https://doi.org/10.1007/s10040-017-1616-y CrossRefGoogle Scholar
  15. Bauser G, Franssen H-JH, Kaiser H-P, Kuhlmann U, Stauffer F, Kinzelbach W (2010) Real-time management of an urban groundwater well field threatened by pollution. Environ Sci Technol 44(17):6802–6807CrossRefGoogle Scholar
  16. Bear J, Levin O (1967) The optimal yield of an aquifer. Water Resour Res 8(1):178–181Google Scholar
  17. Bredehoeft J (2005) The conceptualization model problem—surprise. Hydrogeol J 13(1):37–46CrossRefGoogle Scholar
  18. Bredehoeft JD, Reichard EG, Gorelick SM (1995) If it works, don’t fix it: benefits from regional ground‐water management. In: Groundwater models for resources analysis and management. CRC, Boca Raton, FL, pp 101–121Google Scholar
  19. Brown CM, Lund JR, Cai X, Reed PM, Zagona EA, Ostfeld A, Hall J, Characklis GW, Yu W, Brekke L (2015) The future of water resources systems analysis: toward a scientific framework for sustainable water management. Water Resour Res 51(8):6110–6124CrossRefGoogle Scholar
  20. California Legislature (2014) The Sustainable Groundwater Management Act. California Legislature, Sacramento, CAGoogle Scholar
  21. Carpenter SR, Brock W, Hanson P (1999) Ecological and social dynamics in simple models of ecosystem management. Ecol Soc 3(2).  https://doi.org/10.5751/ES-00122-030204
  22. Castilla-Rho JC, Mariethoz G, Rojas R, Andersen MS, Kelly BFJ (2015) An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ Model Softw 73:305–323CrossRefGoogle Scholar
  23. Castilla-Rho JC (2017) Groundwater modeling with stakeholders: finding the complexity that matters. Groundwater.  https://doi.org/10.1111/gwat.12569 CrossRefGoogle Scholar
  24. CSIRO (2016) Australian water availability project. http://www.csiro.au/awap/#maps. Accessed June 2019
  25. Currell M, Gleeson T, Dahlhaus P (2016) A new assessment framework for transience in hydrogeological systems. Groundwater 54(1):4–14.  https://doi.org/10.1111/gwat.12300 CrossRefGoogle Scholar
  26. DELWP (2015a) Ministerial guidelines for groundwater licensing and the protection of high value groundwater dependent ecosystems. Government of Victoria, Victoria, AustraliaGoogle Scholar
  27. DELWP (2015b) Resource share guidelines. Planning the take of Victoria′s groundwater resources. Dept. of Environment Land Water and Planning, Victorian Government, Victoria, AustraliaGoogle Scholar
  28. DLRM (2016) Alice Springs Water Allocation Plan 2016–2026. Dept. of Land Resource Management, Northern Territory Government, Alice Springs, AustraliaGoogle Scholar
  29. Doherty JE, Hunt RJ, Tonkin MJ (2010) Approaches to highly parameterized inversion: a guide to using PEST for model-parameter and predictive-uncertainty analysis. US Geol Surv Sci Invest Rep 2010–5211Google Scholar
  30. DOW (2009) Gnangara groundwater areas allocation plan. Dept. of Water, Government of Western Australia, Perth, AustraliaGoogle Scholar
  31. Ebrahim, Girma Yimer, Andreja Jonoski, Ali Al-Maktoumi, Mushtaque Ahmed, and Arthur Mynett (2015) Simulation-optimization approach for evaluating the feasibility of managed aquifer recharge in the Samail lower catchment, Oman. J Water Resour Plan Manag 142(2):05015007CrossRefGoogle Scholar
  32. Elsawah S, Guillaume JHA (2016) Incorporating human aspects into groundwater research and policy making: a soft and critical systems thinking approach. In: Anthony J, Jakeman O, Barreteau RJ, Hunt, JD, Rinaudo JD, Ross A (eds) Integrated groundwater management: concepts, approaches and challenges. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  33. Emch PG, Yeh WW-G (1998) Management model for conjunctive use of coastal surface water and ground water. J Water Resour Plan Manag 124(3):129–139.  https://doi.org/10.1061/(ASCE)0733-9496(1998)124:3(129 CrossRefGoogle Scholar
  34. Esteban E, Dinar A (2012) Modeling sustainable groundwater management: packaging and sequencing of policy interventions. J Environ Manag 119C:93–102Google Scholar
  35. Famiglietti JS (2014) The global groundwater crisis. Nature Clim Change 4(11):945–948.  https://doi.org/10.1038/nclimate2425 CrossRefGoogle Scholar
  36. Fienen, Michael N, Kenneth R Bradbury, Maribeth Kniffin, and Paul M Barlow. (2018) Depletion mapping and constrained optimization to support managing groundwater extraction. Groundwater 56(1):18–31CrossRefGoogle Scholar
  37. Foster S, Evans R, Escolero O (2015) The groundwater management plan: in praise of a neglected ‘tool of our trade’. Hydrogeol J 23(5):847–850.  https://doi.org/10.1007/s10040-015-1261-2 CrossRefGoogle Scholar
  38. Frazier vs Brown (1861) Frazier vs Brown. Ohio Supreme Court, Columbus, OHGoogle Scholar
  39. Gallagher M, Doherty J (2007) Parameter estimation and uncertainty analysis for a watershed model. Environ Model Softw 22(7):1000–1020.  https://doi.org/10.1016/j.envsoft.2006.06.007. CrossRefGoogle Scholar
  40. Ghorbanidehno H, Kokkinaki A, Kitanidis PK, Darve E (2017) Optimal estimation and scheduling in aquifer management using the rapid feedback control method. Adv Water Resour 110:310–318CrossRefGoogle Scholar
  41. Giordano M (2009) Global groundwater? Issues and solutions. Ann Rev Environ Resour 34(1):153–178.  https://doi.org/10.1146/annurev.environ.030308.100251 CrossRefGoogle Scholar
  42. Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26.  https://doi.org/10.1111/j.1745-6584.2011.00825.x CrossRefGoogle Scholar
  43. GWM (2001) Murrayville area groundwater management plan. Goulburn Murray Water, Victoria, Australia Google Scholar
  44. GWM (2006) Groundwater management plan for the Katunga water supply protection area. Goulburn Murray Water, Victoria, AustraliaGoogle Scholar
  45. GMW (2009) Mid-Loddon groundwater management area local management rules. Goulburn Murray Water, Victoria, AustraliaGoogle Scholar
  46. GMW (2011) Upper Ovens River water supply protection area water management plan. Goulburn Murray Water, Victoria, AustraliaGoogle Scholar
  47. GWM (2012) Loddon highlands water supply protection area groundwater management plan. Goulburn Murray Water, Victoria, AustraliaGoogle Scholar
  48. Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23(4):211–219CrossRefGoogle Scholar
  49. Gorelick SM (1983) A review of distributed parameter groundwater management modeling methods. Water Resour Res 19(2):17CrossRefGoogle Scholar
  50. Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51(5):3031–3051.  https://doi.org/10.1002/2014WR016825 CrossRefGoogle Scholar
  51. Government of Australia (2007) Water Act. Government of Australia, Canberra, AustraliaGoogle Scholar
  52. Guillaume JHA, El Sawah S (2014) Fostering assumption-based stress-test thinking in managing groundwater systems: learning to avoid failures due to basic dynamics. Hydrogeol J 22(7):1507–1523.  https://doi.org/10.1007/s10040-014-1153-x CrossRefGoogle Scholar
  53. Guillaume JHA, Hunt RJ, Comunian A, Blakers RS, Baihua FU (2016) Methods for exploring uncertainty in groundwater management predictions. In: Jakeman AJ (ed) Integrated groundwater management. Springer, Heidelberg, Germany CrossRefGoogle Scholar
  54. Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248.  https://doi.org/10.1126/science.162.3859.1243 CrossRefGoogle Scholar
  55. Head B (2010) Water policy: evidence, learning and the governance of uncertainty. Polic Soc 29:11Google Scholar
  56. Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A, Arshad M, Hamilton S (2016) Integrated groundwater management: an overview of concepts and challenges. In: Anthony J, Jakeman O, Barreteau RJ, Hunt, JD, Rinaudo JD, Ross A (eds) Integrated groundwater management: concepts, approaches and challenges. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  57. Janssen MA, Carpenter SR (1999) Managing the resilience of lakes: a multi-agent modeling approach. Conserv Ecol 3(2):15CrossRefGoogle Scholar
  58. Jones LD, Willis R, Yeh WW‐G (1987) Optimal control of nonlinear groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106CrossRefGoogle Scholar
  59. Konikow L, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13(1):317–320.  https://doi.org/10.1007/s10040-004-0411-8 CrossRefGoogle Scholar
  60. Lade SJ, Tavoni A, Levin SA, Schlüter M (2013) Regime shifts in a social-ecological system. Theor Ecol 6(3):359–372.  https://doi.org/10.1007/s12080-013-0187-3 CrossRefGoogle Scholar
  61. Loucks DP (1992) Water resource systems models: their role in planning. J Water Resour Plan Manag 118(3):214–223.  https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(214) CrossRefGoogle Scholar
  62. Loucks DP, Van Beek E (2005) Water resources systems planning and management: an introduction to methods, models and applications. UNESCO, ParisGoogle Scholar
  63. Habibi Davijani M, Banihabib ME, Nadjafzadeh Anvar A, Hashemi SR (2016) Multi-objective optimization model for the allocation of water resources in arid regions based on the maximization of socioeconomic efficiency. Water Resour Manag 30.  https://doi.org/10.1007/s11269-015-1200-y CrossRefGoogle Scholar
  64. McKay J (2006) Groundwater as the Cinderella of water laws, policies, and institutions in Australia. International Symposium on Groundwater Sustainability (ISGWAS), Alicante, Spain, January 2006Google Scholar
  65. McMahon TA, Adeloye AJ (2005) Water resources yield. Water Resources, Littleton, COGoogle Scholar
  66. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:1.  https://doi.org/10.2134/jeq2009.0108 CrossRefGoogle Scholar
  67. Mulligan KB, Brown C, Yang YE, Ahlfeld DP (2014) Assessing groundwater policy with coupled economic-groundwater hydrologic modelling. Water Resour Res 50(3):2257–2275CrossRefGoogle Scholar
  68. Nelson R (2013) Taking policy from paper to the pump: lessons on effective and flexible groundwater policy and management from the Western U.S. and Australia. Comparative Groundwater Law and Policy Program, Stanford University, Palo Alto, CAGoogle Scholar
  69. Niswonger RG, Panday S, Ibaraki M (2011) MODFLOW-NWT: a Newton formulation for MODFLOW-2005. https://www.usgs.gov/software/modflow-nwt-a-newton-formulation-modflow-2005. Accessed June 2019
  70. NREATS (2009) Water allocation plan for the Tindall Limestone Aquifer Katherine 2009–2019. Dept. of Natural Resources Environment, the Arts and Sport, Northern Territory Government, Katherine, NT, AustraliaGoogle Scholar
  71. Park C-H, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290(1):80–99CrossRefGoogle Scholar
  72. Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C (2011) Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environ Model Softw 26(8):999–1008.  https://doi.org/10.1016/j.envsoft.2011.02.010. CrossRefGoogle Scholar
  73. Peterson TJ, Western AW (2014) Nonlinear time series modeling of unconfined groundwater head. Water Resour Res 50(10):25.  https://doi.org/10.1002/2013wr014800 CrossRefGoogle Scholar
  74. Peterson TJ, Western AW, Argent RM (2012) Analytical methods for ecosystem resilience: a hydrological investigation. Water Resour Res 48(10).  https://doi.org/10.1029/2012WR012150 CrossRefGoogle Scholar
  75. Plato (2003) The last day of Socrates, ed. by Harold Tarrant. Penguin, LondonGoogle Scholar
  76. Python Software Foundation (2019) Python language reference, version 2.7. http://www.python.org. Accessed June 2019
  77. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2008) Australian water availability project (AWAP). CSIRO Marine and Atmospheric Research Component: final report for phase 3, CSIRO, Canberra, AustraliaGoogle Scholar
  78. Reed PM, Minsker BS (2004) Striking the balance: long-term groundwater monitoring design for conflicting objectives. J Water Resour Plan Manag 130(2):140–149.  https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(140) CrossRefGoogle Scholar
  79. Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour 51:438–456.  https://doi.org/10.1016/j.advwatres.2012.01.005. CrossRefGoogle Scholar
  80. Reichard E, Johnson T (2005) Assessment of regional management strategies for controlling seawater intrusion. J Water Resour Plan Manag 131(4):280–291.  https://doi.org/10.1061/(ASCE)0733-9496(2005)131:4(280) CrossRefGoogle Scholar
  81. Rejani R, Jha MK, Panda SN, Mull R (2008) Simulation modeling for efficient groundwater management in Balasore Coastal Basin, India. Water Resour Manag 22(1):23–50.  https://doi.org/10.1007/s11269-006-9142-z CrossRefGoogle Scholar
  82. Rousseau-Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CT, de Marsily G (2013) Time to reach near-steady state in large aquifers. Water Resour Res 49(10):6893–6908.  https://doi.org/10.1002/wrcr.20534 CrossRefGoogle Scholar
  83. SAAL NRM (2009) Water allocation plan for the Far North Prescribed Wells area. South Australian Arid Lands Natural Resources Management Board, Government of South Australia, Adelaide, AustraliaGoogle Scholar
  84. Singh A (2012) An overview of the optimization modelling applications. J Hydrol 466–467(0):167–182.  https://doi.org/10.1016/j.jhydrol.2012.08.004. CrossRefGoogle Scholar
  85. Singh A (2014a) Simulation and optimization modeling for the management of groundwater resources. II: combined applications. J Irrig Drain Eng 140(4):04014002.  https://doi.org/10.1061/(ASCE)IR.1943-4774.0000689 CrossRefGoogle Scholar
  86. Singh A (2014b) Groundwater resources management through the applications of simulation modeling: a review. Sci Total Environ 499(0):414–423.  https://doi.org/10.1016/j.scitotenv.2014.05.048. CrossRefGoogle Scholar
  87. Singh A (2014c) Simulation and optimization modeling for the management of groundwater resources I: distinct applications. J Irrig Drain Eng 140(4):04013021.  https://doi.org/10.1061/(ASCE)IR.1943-4774.0000688 CrossRefGoogle Scholar
  88. Singh A (2015) Review: computer-based models for managing the water-resource problems of irrigated agriculture. Hydrogeol J 23(6):1217–1227.  https://doi.org/10.1007/s10040-015-1270-1 CrossRefGoogle Scholar
  89. Sivapalan M, Savenije HHG, Blöschl G (2012) Socio‐hydrology: a new science of people and water. Hydrol Process 26(8):1270–1276CrossRefGoogle Scholar
  90. Sreekanth J, Datta B (2011) Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resour Res 47(4).  https://doi.org/10.1029/2010WR009683
  91. Sreekanth J, Moore C, Wolf L (2016) Pareto-based efficient stochastic simulation–optimization for robust and reliable groundwater management. J Hydrol 533:180–190CrossRefGoogle Scholar
  92. Srikanthan S, Chiew F, and Frost, A (2006), Stochastic Climate Library Version 2.2. eWater, CanberraGoogle Scholar
  93. SRW (2010) Groundwater management plan Koo Wee Rup water supply protection area. Southern Rural Water, Maffra, AustraliaGoogle Scholar
  94. Tankersley CD, Graham WD (1994) Development of an optimal control system for maintaining minimum groundwater levels. Water Resour Res 30(11):3171–3181.  https://doi.org/10.1029/94wr01790 CrossRefGoogle Scholar
  95. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):L20402.  https://doi.org/10.1029/2010gl044571 CrossRefGoogle Scholar
  96. Wagner BJ (1995) Recent advances in simulation: optimization groundwater management modeling. Rev Geophys 33(S2):1021–1028CrossRefGoogle Scholar
  97. Walton WC (2011) Aquifer system response time and groundwater supply management. Ground Water 49(2):126–127.  https://doi.org/10.1111/j.1745-6584.2010.00770.x CrossRefGoogle Scholar
  98. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26.  https://doi.org/10.1016/j.advwatres.2012.03.004. CrossRefGoogle Scholar
  99. White EK, Peterson TJ, Costelloe J, Western AW, Carrara E (2016) Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans. Water Resour Res 52(6):4863–4882.  https://doi.org/10.1002/2015WR018474 CrossRefGoogle Scholar
  100. White JT, Fienen MN, Barlow PM, Welter DE (2018) A tool for efficient, model-independent management optimization under uncertainty. Environ Model Softw 100:213–221.  https://doi.org/10.1016/j.envsoft.2017.11.019. CrossRefGoogle Scholar
  101. World Economic Forum (2018) The global risks report 2018, 13th edn. World Economic Forum, Geneva, SwitzerlandGoogle Scholar
  102. Yeh WG (1992) Systems analysis in ground: water planning and management. J Water Resour Plan Manag 118:13Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Infrastructure EngineeringUniversity of MelbourneVictoriaAustralia
  2. 2.Bureau of MeteorologyDocklandsVictoriaAustralia

Personalised recommendations