Advertisement

Hydrogeology Journal

, Volume 27, Issue 7, pp 2595–2616 | Cite as

Simulation-optimization model for estimating hydraulic conductivity: a numerical case study of the Lu Dila hydropower station in China

  • Wuwen QianEmail author
  • Junrui ChaiEmail author
  • Yuan Qin
  • Zengguang Xu
Report

Abstract

A simulation-optimization model (ADINA-MMRDE) has been developed using the commercial finite-element software ADINA coupled with an improved differential evolution algorithm (MMRDE) to estimate the hydraulic conductivity of the aquifer of the Lu Dila hydropower project in China. The ADINA-MMRDE model employed the sum of the weighted square difference between the simulated value and the observed value as the objective function. To evaluate the accuracy of the MMRDE, the ADINA software was also coupled with a classical differential evolution (DE) algorithm and particle swarm optimization (PSO). Before estimating the initial seepage field of the Lu Dila hydropower station, the performance of the ADINA-MMRDE model was first tested using a boundary-simplified model based on the initial seepage field model. The effects of different objective functions, measurement errors and population sizes on the performance of ADINA-MMRDE were investigated. Then the ADINA-MMRDE model was applied to the Lu Dila hydropower project by considering water levels in 20 boreholes. The results showed that the head calculated using the estimated parameters was very close to its observed value. The water levels of 13 monitoring boreholes were used for further confirmation of the parameters obtained by the inversion. The results revealed that the calculated values of the monitoring borehole water levels were generally well fitted to the measured values. This study demonstrated the effectiveness of the ADINA-MMRDE model for practical and complex parameter inversion tasks.

Keywords

Metamorphic rocks Numerical modeling Inverse modeling Simulation-optimization model Hydraulic conductivity China 

Modèle de simulation et d’optimisation pour estimer la conductivité hydraulique: une étude d’un cas numérique de la centrale hydroélectrique de Lu Dila en Chine

Résumé

Un modèle de simulation et d’optimisation (ADINA-MMRDE) a été développé en utilisant le logiciel à éléments finis du commerce ADINA, couplé à un algorithme amélioré à évolution différentielle (MMRDE) pour estimer la conductivité hydraulique de l’aquifère du projet de centrale hydroélectrique de Lu Dila en Chine. Le modèle ADINA-MMRDE a utilisé la somme des écarts quadratiques pondérés entre les valeurs simulées et les valeurs observées, comme fonction objectif. Pour évaluer la fiabilité de MMRDE, le logiciel ADINA a été également couplé à un algorithme à évolution différentielle (ED) classique et à une optimisation par essaim de particules (OEP). Avant d’estimer le champ d’infiltration initial de la centrale hydroélectrique de Lu Dila, la performance du modèle ADINA-MMRDE a d’abord été testée à l’aide d’un modèle à limites simplifiées basé sur le modèle de champ d’infiltration initial. Les effets des différentes fonctions objectif, des erreurs de mesure et de la taille des populations sur la performance de ADINA-MMRDE ont été étudiés. Ensuite, le modèle ADINA-MMRDE a été appliqué au projet de la centrale hydroélectrique de Lu Dila en prenant en compte les niveaux d’eau de 20 forages. Les résultats ont montré que la charge hydraulique calculée en utilisant les paramètres estimés était très proche des valeurs observées. Les niveaux d’eau de 13 des forages de suivi ont été utilisés pour confirmer davantage les paramètres obtenus par inversion. Les résultats ont montré que les valeurs calculées des niveaux d’eau du forage de suivi étaient généralement bien ajustées aux valeurs mesurées. Cette étude a démontré l’efficience du modèle ADINA-MMRDE pour des tâches pratiques et complexes d’inversion des paramètres.

Modelo de simulación-optimización para estimar la conductividad hidráulica: un estudio de caso numérico de la central hidroeléctrica de Lu Dila en China

Resumen

Se ha desarrollado un modelo de simulación-optimización (ADINA-MMRDE) utilizando el software comercial de elementos finitos ADINA junto con un algoritmo de evolución diferencial mejorado (MMRDE) para estimar la conductividad hidráulica del acuífero del proyecto hidroeléctrico Lu Dila en China. El modelo ADINA-MMRDE empleaba la suma de la diferencia cuadrada ponderada entre el valor simulado y el valor observado como función objetiva. Para evaluar la precisión del MMRDE, el software ADINA también se combinó con un algoritmo clásico de evolución diferencial (DE) y optimización de la nube de partículas (PSO). Antes de estimar el campo de infiltración inicial de la central hidroeléctrica Lu Dila, se probó el rendimiento del modelo ADINA-MMRDE utilizando un modelo simplificado de límites basado en el modelo del campo de infiltración inicial. Se investigaron los efectos de diferentes funciones objetivas, errores de medición y tamaños de población sobre el desempeño de ADINA-MMRDE. Luego se aplicó el modelo ADINA-MMRDE al proyecto hidroeléctrico Lu Dila, considerando los niveles de agua en 20 pozos. Los resultados mostraron que la altura calculada utilizando los parámetros estimados estaba muy cerca de su valor observado. Los niveles de agua de 13 pozos de monitoreo se utilizaron para confirmar los parámetros obtenidos por la inversión. Los resultados revelaron que los valores calculados de los niveles de agua de la perforación de monitoreo estaban generalmente bien ajustados a los valores medidos. Este estudio demostró la eficacia del modelo ADINA-MMRDE para tareas prácticas y complejas de inversión de parámetros.

估计渗透系数的模拟-优化模型:以中国鲁地拉水电站为数值实例

摘要

在这项研究中, 开发了一个模拟优化模型(ADINA-MMRDE), 使用商业有限元软件ADINA结合改进的差分进化算法(MMRDE)来估算中国鲁地拉水电项目含水层的渗透系数。在ADINA-MMRDE模型中, 使用模拟值和观测值之间的加权平方差之和作为目标函数。为了评估MMRDE的准确性, 还将ADINA软件与经典差分进化(DE)算法和粒子群优化(PSO)进行了结合。在估算鲁地拉水电站的初始渗流场之前, 首先使用基于初始渗流场模型的边界简化模型测试了ADINA-MMRDE模型的性能。研究了不同目标函数、测量误差和种群大小对ADINA-MMRDE性能的影响。然后通过考虑20个钻孔水位作为观测数据, 将ADINA-MMRDE模型应用于鲁地拉水电项目。结果显示使用估计参数计算的水头非常接近其观测值。13个监测孔的水位用于进一步验证反演得到的参数。结果表明, 监测孔水位的计算值总体上与其测量值吻合良好。本研究证明了ADINA-MMRDE模型对实际和复杂参数反演任务的有效性。

Modelo de simulação-otimização para estimativa de condutividade hidráulica: um estudo de caso numérico da usina hidroelétrica Lu Dila na China

Resumo

Foi desenvolvido um modelo de simulação-otimização (ADINA-MMRDE) utilizando-se o programa comercial de elementos finitos ADINA acoplado a um algoritmo evolucionário diferencial modificado (MMRDE) para estimar a condutividade hidráulica do maciço do projeto da usina hidroelétrica Lu Dila na China. O modelo ADINA-MMRDE empregou a soma dos quadrados das diferenças ponderadas entre os valores simulados e os valores observados como expressão da função objetivo. Para avaliar a acurácia do MMRDE, o programa ADINA foi também acoplado ao clássico algoritmo de evolução diferencial (DE) e ao de otimização de enxame de partículas (PSO). Antes de estimar o campo de exfiltração inicial da usina hidroelétrica Lu Dila, o desempenho do modelo ADINA-MMRDE foi primeiro testado utilizando uma condição de contorno simplificada baseada no modelo de campo de exfiltração inicial. Foram investigados os efeitos de diferentes funções objetivos, erros de medições e dimensionamentos de populações no desempenho do ADINA-MMRDE. Em seguida o modelo ADINA-MMRDE foi aplicado ao projeto hidroelétrico Lu Dila a partir dos níveis de água de 20 poços piezométricos. Os resultados demonstraram que as cargas hidráulicas calculadas utilizando-se os parâmetros estimados foram significativamente próximas aos respectivos valores observados. O nível de água de 13 poços de monitoramento foi utilizado para a validação dos parâmetros obtidos pela modelagem inversa. Os resultados revelaram que os valores calculados para as cargas hidráulicas dos poços de monitoramento foram geralmente bem ajustados aos valores medidos. Este estudo demonstrou a efetividade do modelo ADINA-MMRDE para modelagem inversa de parâmetros práticos e complexos.

Notes

Acknowledgements

The authors thank Jian Huang (Engineer, Northwest Engineering Corporation Limited, Power China, Xi’an, PR China) for providing all the information concerning the Lu Dila hydropower project used in this investigation. The authors thank LetPub (www.LetPub.com) for linguistic assistance during the preparation of this manuscript.

Funding information

This study was supported by the Natural Science Foundation of Shaanxi Province (Program 2017JZ013), the National Natural Science Foundation of China (Grants 51679197, 51679193), and the National Science Foundation for Post-Doctoral Scientists of China (No. 2014M562524XB).

Supplementary material

10040_2019_2002_MOESM1_ESM.zip (3.7 mb)
ESM 1 (ZIP 3832 kb)

References

  1. ADINA R & D Inc. (2013) ADINA user interface command reference manual volume V: display processing. ADINA R & D, Watertown, MA Google Scholar
  2. Ahmadi MA (2015) Connectionist approach estimates gas–oil relative permeability in petroleum reservoirs: application to reservoir simulation. Fuel 140:429–439.  https://doi.org/10.1016/j.fuel.2014.09.058 CrossRefGoogle Scholar
  3. Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic, San DiegoGoogle Scholar
  4. Basile A, Ciollaro G, Coppola A (2003) Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resour Res 39:SBH131–SBH1312.  https://doi.org/10.1029/2003WR002432 CrossRefGoogle Scholar
  5. Cheng X, Xu W, Yue C, Du X, Dowding CH (2014) Seismic response of fluid-structure interaction of undersea tunnel during bidirectional earthquake. Ocean Eng 75:64–70.  https://doi.org/10.1016/j.oceaneng.2013.11.017 CrossRefGoogle Scholar
  6. Dewandel B, Lanini S, Lachassagne P, Marechal JC (2018) A generic analytical solution for modelling pumping tests in wells intersecting fractures. J Hydrol 559:89–99CrossRefGoogle Scholar
  7. Durner W, Jansen U, Iden SC (2008) Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modelling. Eur J Soil Sci 59:114–124.  https://doi.org/10.1111/j.1365-2389.2007.00972.x CrossRefGoogle Scholar
  8. Elçi A, Ayvaz MT (2014) Differential-evolution algorithm-based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. J Hydrol 511:736–749.  https://doi.org/10.1016/j.jhydrol.2014.01.071 CrossRefGoogle Scholar
  9. Guan Y, Zhao X, Wang G, Dai J, Zhang H (2017) 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube. Energy Buildings 139:186–196.  https://doi.org/10.1016/j.enbuild.2017.01.023 CrossRefGoogle Scholar
  10. Guilan Z, Yuan W, Fei W, Jian Y (2008) Stochastic back analysis of permeability coefficient using generalized Bayesian method. Water Sci Eng 1:83–92.  https://doi.org/10.3882/j.issn.1674-2370.2008.03.009 CrossRefGoogle Scholar
  11. Gurarslan G, Karahan H (2015) Solving inverse problems of groundwater-pollution-source identification using a differential evolution algorithm. Hydrogeol J 23:1109–1119.  https://doi.org/10.1007/s10040-015-1256-z CrossRefGoogle Scholar
  12. Ha T, Pyun S, Shin C (2006) Efficient electric resistivity inversion using adjoint state of mixed finite-element method for Poisson’s equation. J Comput Phys 214:171–186.  https://doi.org/10.1016/j.jcp.2005.09.007 CrossRefGoogle Scholar
  13. Haasdonk B, Ohlberger M (2011) Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math Comput Model Dyn Syst 17:145–161.  https://doi.org/10.1080/13873954.2010.514703 CrossRefGoogle Scholar
  14. Hill MC, Tiedeman CR (2007) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UKGoogle Scholar
  15. Illman WA, Berg SJ, Alexander M (2012) Cost comparisons of aquifer heterogeneity characterization methods. Ground Water Monitor Remed 32:57–65.  https://doi.org/10.1111/j.1745-6592.2011.01376.x CrossRefGoogle Scholar
  16. Kaydani H, Mohebbi A (2013) A comparison study of using optimization algorithms and artificial neural networks for predicting permeability. J Pet Sci Eng 112:17–23.  https://doi.org/10.1016/j.petrol.2013.11.009 CrossRefGoogle Scholar
  17. Kaydani H, Mohebbi A, Eftekhari M (2014) Permeability estimation in heterogeneous oil reservoirs by multi-gene genetic programming algorithm. J Pet Sci Eng 123:201–206.  https://doi.org/10.1016/j.petrol.2014.07.035 CrossRefGoogle Scholar
  18. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, vol 1944. pp 1942-1948.  https://doi.org/10.1109/ICNN.1995.488968
  19. Kuklik P (2011) Preconsolidation, structural strength of soil, and its effect on subsoil upper structure interaction. Eng Struct 33:1195–1204.  https://doi.org/10.1016/j.engstruct.2010.12.041 CrossRefGoogle Scholar
  20. Lakshmi Prasad K, Rastogi AK (2001) Estimating net aquifer recharge and zonal hydraulic conductivity values for Mahi Right Bank Canal project area, India by genetic algorithm. J Hydrol 243:149–161.  https://doi.org/10.1016/S0022-1694(00)00364-4 CrossRefGoogle Scholar
  21. Li W, Englert A, Cirpka OA, Vanderborght J, Vereecken H (2007) Two-dimensional characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour Res 43.  https://doi.org/10.1029/2006WR005333
  22. Luan M, Qu P, Jeng DS, Guo Y, Yang Q (2008) Dynamic response of a porous seabed-pipeline interaction under wave loading: soil-pipeline contact effects and inertial effects. Comput Geotech 35:173–186.  https://doi.org/10.1016/j.compgeo.2007.05.004 CrossRefGoogle Scholar
  23. Luo Y, Chen J, Chen Y, Diao P, Qiao X (2018) Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method. Tunn Undergr Space Technol 71:478–493.  https://doi.org/10.1016/j.tust.2017.10.003 CrossRefGoogle Scholar
  24. Medeiros de Souza WR, Bouaanani N, Martinelli AE, Bezerra UT (2018) Numerical simulation of the thermomechanical behavior of cement sheath in wells subjected to steam injection. J Pet Sci Eng 167:664–673.  https://doi.org/10.1016/j.petrol.2018.04.023 CrossRefGoogle Scholar
  25. Melissianos VE, Korakitis GP, Gantes CJ, Bouckovalas GD (2016) Numerical evaluation of the effectiveness of flexible joints in buried pipelines subjected to strike-slip fault rupture. Soil Dyn Earthq Eng 90:395–410.  https://doi.org/10.1016/j.soildyn.2016.09.012 CrossRefGoogle Scholar
  26. Niu W-J, Wang Z, Chen F, Li H (2013) Settlement analysis of a confined sand aquifer overlain by a clay layer due to single well pumping. Math Probl Eng.  https://doi.org/10.1155/2013/789853 Google Scholar
  27. Pasetto D, Putti M, Yeh WWG (2013) A reduced-order model for groundwater flow equation with random hydraulic conductivity: application to Monte Carlo methods. Water Resour Res 49:3215–3228.  https://doi.org/10.1002/wrcr.20136 CrossRefGoogle Scholar
  28. Qian W, Chai J, Xu Z, Zhang Z (2018) Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection. Appl Intell 48:3612–3629.  https://doi.org/10.1007/s10489-018-1153-y CrossRefGoogle Scholar
  29. Razavi S, Jalali-Farahani F (2010) Optimization and parameters estimation in petroleum engineering problems using ant colony algorithm. J Pet Sci Eng 74:147–153.  https://doi.org/10.1016/j.petrol.2010.08.009 CrossRefGoogle Scholar
  30. Ritter A, Hupet F, Muñoz-Carpena R, Lambot S, Vanclooster M (2003) Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agric Water Manag 59:77–96.  https://doi.org/10.1016/S0378-3774(02)00160-9 CrossRefGoogle Scholar
  31. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52:397–407.  https://doi.org/10.1109/TAP.2004.823969 CrossRefGoogle Scholar
  32. Siade AJ, Putti M, Yeh WWG (2010) Snapshot selection for groundwater model reduction using proper orthogonal decomposition. Water Resour Res 46.  https://doi.org/10.1029/2009wr008792
  33. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359.  https://doi.org/10.1023/a:1008202821328 CrossRefGoogle Scholar
  34. Straface S, Yeh TCJ, Zhu J, Troisi S, Lee CH (2007) Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resour Res 43.  https://doi.org/10.1029/2006WR005287
  35. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013, IEEE Computer Society, Cancun, Mexico, 20–23 June 2013, pp 71–78Google Scholar
  36. Tber MH, El Alaoui Talibi M (2007) A finite element method for hydraulic conductivity identification in a seawater intrusion problem. Comput Geosci 33:860–874.  https://doi.org/10.1016/j.cageo.2006.10.012 CrossRefGoogle Scholar
  37. Thomas A, Majumdar P, Eldho TI, Rastogi AK (2018) Simulation optimization model for aquifer parameter estimation using coupled meshfree point collocation method and cat swarm optimization. Eng Anal Boundary Elements 91:60–72.  https://doi.org/10.1016/j.enganabound.2018.03.004 CrossRefGoogle Scholar
  38. To-Viet N, Min T-K, Shin H (2013) Using inverse analysis to estimate hydraulic properties of unsaturated sand from one-dimensional outflow experiments. Eng Geol 164:163–171.  https://doi.org/10.1016/j.enggeo.2013.07.005 CrossRefGoogle Scholar
  39. Uddin MJ, Rana P, Beg OA, Ismail AIM (2016) Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation. Alexandria Eng J 55:1305–1319.  https://doi.org/10.1016/j.aej.2016.04.021 CrossRefGoogle Scholar
  40. Ushijima TT, Yeh WWG (2015) Experimental design for estimating unknown hydraulic conductivity in an aquifer using a genetic algorithm and reduced order model. Adv Water Resour 86:193–208.  https://doi.org/10.1016/j.advwatres.2015.09.029 CrossRefGoogle Scholar
  41. Wen Z, Zhan H, Wang Q, Liang X, Ma T, Chen C (2017) Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers. J Hydrol 548:40–45.  https://doi.org/10.1016/j.jhydrol.2017.02.046 CrossRefGoogle Scholar
  42. Xu Z, Liu Y, Huang J, Wen L, Chai J (2019) Performance assessment of the complex seepage-control system at the Lu Dila hydropower station in China. Int J Geomechan 19.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0001363 CrossRefGoogle Scholar
  43. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13:945–958.  https://doi.org/10.1109/TEVC.2009.2014613 CrossRefGoogle Scholar
  44. Zhang P, Wei W, Jia N, Ding H, Liu R (2018) Effect of seepage on the penetration resistance of bucket foundations with bulkheads for offshore wind turbines in sand. Ocean Eng 156:82–92.  https://doi.org/10.1016/j.oceaneng.2018.03.016 CrossRefGoogle Scholar
  45. Zhou C-B, Liu W, Chen Y-F, Hu R, Wei K (2015) Inverse modeling of leakage through a rockfill dam foundation during its construction stage using transient flow model, neural network and genetic algorithm. Eng Geol 187:183–195.  https://doi.org/10.1016/j.enggeo.2015.01.008 CrossRefGoogle Scholar
  46. Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37.  https://doi.org/10.1016/j.advwatres.2013.10.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Eco-hydraulics in Northwest Arid Region of ChinaXi’an University of TechnologyXi’anChina

Personalised recommendations