Advertisement

Evaluation of water inrush from underlying aquifers by using a modified water-inrush coefficient model and water-inrush index model: a case study in Feicheng coalfield, China

  • Longqing Shi
  • Mei QiuEmail author
  • Ying Wang
  • Xingyue Qu
  • Tianhao Liu
Paper
  • 16 Downloads

Abstract

Water inrush from underlying aquifers seriously threatens mining of Permo-Carboniferous coal seams in many North China coalfields. To evaluate the risk of water inrush from underlying aquifers, a modified water-inrush coefficient method—using the water inrush coefficient (T) and geological structure index (G)—and a water-inrush index model (WII model) were proposed. The T_G model improved the traditional water-inrush coefficient method by quantifying the degree of geological structure development, considering three main controlling factors: G, aquifer water pressure (P) and aquitard thickness (M). The WII model was constructed to assess the risk of floor water inrush by the entropy weight method, which integrated six factors: G, P, M, the depth at which ground pressure creates a broken-rock zone (Cp), aquifer water yield property (Y), and percentage of brittle rock within the aquitard (B). Results from the engineering practice data analysis validated the T_G and WII models as operational tools to evaluate the risk of water inrush from an underlying aquifer. The comparative analysis of the predictions by these two models shows that the prediction accuracy of the WII model is 13% higher than that of the T_G model, and approximately 21% of the two model predictions are not in agreement. A more reasonable prediction was obtained with application of the T_G and WII models to Feicheng coalfield in Shandong Province to evaluate water inrush risk from the underlying aquifer, and the prediction offers guidance on different preventive measures against water hazards in the underlying Ordovician limestone in the different zones.

Keywords

Water inrush Mining Risk evaluation Water-inrush index model China 

Évaluation de l’émergence d’eau issue des aquifères sous-jacents à l’aide d’un modèle modifié de coefficient d’émergence d’eau et d’un modèle d’indice d’émergence d’eau: une étude de cas situé dans le bassin houiller d Feicheng Coalfield, Chine

Résumé

L’émergence d’eau issue des aquifères sous-jacents menace sérieusement l’exploitation des veines de charbon du Permo-Carbonifère dans de nombreux bassins houillers en Chine du Nord. Pour évaluer le risque d’émergence d’eau issue des aquifères sous-jacents, une méthode modifiée de coefficient d’émergence d’eau—utilisant le coefficient d’émergence (T) et l’indice de structure géologiques (G)—et un modèle d’indice d’émergence d’eau (modèle WII) sont proposées. Le modèle T_G a amélioré la méthode traditionnelle du coefficient d’afflux d’eaux souterraines en quantifiant le degré de développement de la structure géologique, compte tenu de trois principaux facteurs de contrôle: G, la pression de l’eau dans l’aquifère (P) et l’épaisseur de l’aquitard (M). Le modèle WII a été élaboré pour évaluer le risque d’afflux d’eaux souterraines au niveau du sol à l’aide de la méthode de pondération de l’entropie, qui intègre six facteurs: G, P, M, la profondeur à laquelle la pression du sous-sol crée une zone de fragilité de la roche (Cp), le coefficient d’emmagasinement de l’aquifère (Y), et le pourcentage de roche fragilisée au sein de l’aquitard (B). Les résultats de l’analyse des données des pratiques d’ingénierie ont validé les modèles T_G et WII en tant qu’outils opérationnels pour évaluer le risque d’afflux d’eaux souterraines issues d’un aquifère sous-jacent. L’analyse comparative des prévisions de ces deux modèles montre que la précision des prévisions du modèle WII est 13% supérieure à celle du modèle T_G, et environ 21% des prévisions des deux modèles ne sont pas concordantes. Une prévision plus réaliste a été obtenue en appliquant les modèles T-G et WII sur le bassin houiller de Feicheng dans la province de Shandong pour évaluer le risque d’afflux d’eaux souterraines issues de l’aquifère sous-jacent, et la prévision offre des conseils sur les différentes mesures à mettre en œuvre pour se prémunir des dangers d’émergence d’eaux souterraines issues des calcaires sous-jacents de l’Ordovicien dans différentes zones.

Evaluación de la filtración de agua desde acuíferos subyacentes utilizando un modelo modificado de coeficiente de filtración y un modelo de índice de filtración: un estudio de caso en el yacimiento de carbón de Feicheng, China

Resumen

La filtración de agua de los acuíferos subyacentes amenaza seriamente la explotación minera de los yacimientos de carbón de Permo-Carboníferos en muchos de aquellos situados en el norte de China. Para evaluar el riesgo de filtración de agua desde los acuíferos subyacentes, se propuso un método modificado de coeficiente de filtración—utilizando el coeficiente de filtración (T) y el índice de estructura geológica (G)—y un modelo de índice de filtración (modelo WII). El modelo T_G mejoró el método tradicional del coeficiente de filtración cuantificando el grado de desarrollo de la estructura geológica, considerando tres factores principales de control: G, la presión del agua del acuífero (P) y el espesor del acuífero (M). El modelo WII se construyó para evaluar el riesgo de filtración desde el piso mediante el método del peso de la entropía, que integró seis factores: G, P, M, la profundidad a la que la presión del terreno crea una zona de roca rota (Cp), propiedad de rendimiento de agua del acuífero (Y), y porcentaje de roca quebradiza dentro del acuífero (B). Los resultados del análisis de datos de la práctica de ingeniería validaron los modelos T_G y WII como herramientas operativas para evaluar el riesgo de la filtración desde un acuífero subyacente. El análisis comparativo de las predicciones de estos dos modelos muestra que la precisión de la predicción del modelo WII es un 13% mayor que la del modelo T_G, y aproximadamente el 21% de las dos predicciones del modelo no están de acuerdo. Se obtuvo una predicción más razonable con la aplicación de los modelos T_G y WII al yacimiento de carbón Feicheng en la provincia de Shandong para evaluar el riesgo de filtración de agua desde acuífero subyacente, y la predicción ofrece orientación sobre diferentes medidas preventivas contra los peligros del agua en la caliza ordovícica subyacente en las diferentes zonas.

基于改进的突水系数法及突水危险性指数法的煤层底板含水层突水危险性评价:以中国肥城煤田为例

摘要

在中国很多华北型煤田,煤层底板含水层突水问题严重威胁石炭-二叠系煤层的开采。本文提出了一种改进的突水系数法(融合突水系数T与构造复杂指数G)与突水危险性指数法(WII模型)来评价煤层底板含水层突水危险性。T_G模型通过定量化构造发育复杂程度改进了传统的突水系数法,考虑了G,含水层水压(P)和隔水层厚度(M)三个主控因素。采用熵权法建立了WII模型,该模型融合了G,P,M,底板破坏深度(Cp),含水层富水性(Y)和脆性岩比率(B)六个主控因素。工程实践数据分析结果验证表明,T_G和WII模型是煤层底板含水层突水危险性评价的一种有效方法。综合分析表明,WII模型的预测精度比T_G模型高13%,并且有近21%的样本预测结果是不同的。将T_G和WII模型综合应用于山东省肥城煤田底板含水层突水危险性评价,得到了较为合理的预测结果,为不同区域的奥陶系灰岩含水层的水害防治措施提供了依据。

Avaliação da afluência de aquíferos subjacentes usando modelos modificados de coeficiente de afluência e de índice de afluência: estudo de caso na jazida de carvão de Feicheng, China

Resumo

A afluência a partir de aquíferos subjacentes é uma ameaça séria em minerações de carvão do Permo-Carbonífero no norte da China. A fim de avaliar o risco de afluência de aquíferos subjacentes, foram propostos um método modificado de coeficiente de afluência—usando o coeficiente de afluência (T) e o índice de estrutura geológica (G)—e um modelo de índice de afluência (modelo WII). O modelo T_G aperfeiçoou o método tradicional de coeficiente de afluência através da quantificação do grau de desenvolvimento de estruturas geológicas, considerando três fatores principais de controle: G, pressão da água do aquífero (P) e espessura do aquitardo (M). O modelo WII foi elaborado para estimar o risco de afluência a partir do piso através do método de peso de entropia, que integrou seis parâmetros: G, P, M, a profundidade na qual a pressão no piso cria uma zona de ruptura na rocha (Cp), rendimento do aquífero (Y), e porcentagem de rocha fraturada no aquitardo (B). Os resultados da análise de dados da prática de engenharia validaram os modelos T_G e WII como ferramentas operacionais para avaliar o risco de afluência de aquífero subjacente. A análise comparativa das previsões desses dois modelos mostra que a precisão do modelo WII é 13% maior em relação ao modelo T_G, e aproximadamente 21% das previsões dos dois modelos não estão em concordância. Uma previsão mais razoável foi obtida a partir da aplicação dos modelos T_G e WII para a jazida de carvão de Feicheng na Província de Shandong para avaliar o risco de afluência a partir do aquífero subjacente, e a previsão oferece orientação sobre medidas distintas de prevenção contra perigos hídricos no calcário Ordoviciano subjacente em zonas diferentes.

Notes

Funding information

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (51804184, 41572244), the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (2017RCJJ033), the Open Fund Research Project of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (MDPC2017ZR05), and the Shandong Province Nature Science Fund (ZR2015DM013).

Supplementary material

10040_2019_1985_MOESM1_ESM.pdf (887 kb)
ESM 1 (PDF 886 kb)

References

  1. Chang CW, Wu CR, Lin CT, Chen HC (2007) An application of AHP and sensitivity analysis for selecting the best slicing machine. Comput Ind Eng 52(2):296–307CrossRefGoogle Scholar
  2. Gu X, Wang J, Liu Y (2010) Water resistant features of high-risk outburst coal seams and standard discriminant model of mining under water-pressure. Min Sci Technol 20:0797–0802Google Scholar
  3. Huang S, Ming B, Huang Q, Leng G, Hou B (2017) A case study on a combination NDVI forecasting model based on the entropy weight method. Water Resour Manag 31:3667–3681.  https://doi.org/10.1007/s11269-017-1692-8 CrossRefGoogle Scholar
  4. Li J (2000) The relations of in-situ rock stress and water-resisting ability for floor aquifuge. Coal Geology & Exploration 28(4):47–49Google Scholar
  5. Li W, Liu Y, Qiao W, Zhao C, Yang D, Guo Q (2018) An improved vulnerability assessment model for floor water bursting from a confined aquifer based on the water inrush coefficient method. Mine Water Environ 37:196–204.  https://doi.org/10.1007/s10230-017-0463-3 CrossRefGoogle Scholar
  6. Ma L (2003) Standardization of statistical data-dimensionless method. Beijing Stat 3:34–35Google Scholar
  7. Meng Z, Li G, Xie X (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143–144:51–60.  https://doi.org/10.1016/j.enggeo.2012.06.004 CrossRefGoogle Scholar
  8. Ministry of Coal Industry (2009) Regulations for coal mine water prevention and control. China Coal Industry Publ. House, BeijingGoogle Scholar
  9. Ministry of Coal Industry (2018) Coal mine water control rules. China Coal Industry Publ. House, BeijingGoogle Scholar
  10. National Bureau of Coal Industry of China (2000) Pillar design and mining regulations under buildings, water, rails and major roadways. China Coal Industry Publ. House, BeijingGoogle Scholar
  11. Qiu M (2016) Karst development and grouting reinforcement of Ordovician top in Feicheng coalfield. PhD Thesis, Qingdao University, Qingdao, ChinaGoogle Scholar
  12. Qiu M, Han J, Zhou Y, Shi LQ (2017a) Prediction reliability of water inrush through the coal mine floor. Mine Water Environ 36(2):217–225.  https://doi.org/10.1007/s10230-017-0431-y CrossRefGoogle Scholar
  13. Qiu M, Shi LQ, Teng C, Zhou Y (2017b) Assessment of water inrush risk using the fuzzy Delphi analytic hierarchy process and Grey relational analysis in the Liangzhuang coal mine, China. Mine Water Environ 36(1):39–50.  https://doi.org/10.1007/s10230-016-0391-7 CrossRefGoogle Scholar
  14. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  15. Shannon CE (1948) A Mathematical Theory of Communication. Bell System Technical Journal 27(4):623-656Google Scholar
  16. Shi L, Gao W, Han J, Tan X (2017) A nonlinear risk evaluation method for water inrush through the seam floor. Mine Water Environ 36(4):597–605.  https://doi.org/10.1007/s10230-017-0449-1 CrossRefGoogle Scholar
  17. Shi LQ, Bo CS, Wei JC (2015) Control theory and technology of Ordovician limestone karst water inrush in North China coalfield. China Coal Industry Publ. House, BeijingGoogle Scholar
  18. Sun W, Wu Q, Liu H, Jiao J (2015) Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system. Phys Chem Earth 89–90:136–144CrossRefGoogle Scholar
  19. Wang Y, Yang W, Li M, Liu X (2012) Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation. Int J Rock Mech Min Sci 52:50–55.  https://doi.org/10.1016/j.ijrmms.2012.03.006 CrossRefGoogle Scholar
  20. Wang Z, Wang C, Wang Z (2018) The hazard analysis of water inrush of mining of thick coal seam under reservoir based on entropy weight evaluation method. Geotech Geol Eng 36(5):3019–3028.  https://doi.org/10.1007/s10706-018-0520-0 CrossRefGoogle Scholar
  21. Wu J, Li P, Qian H, Chen J (2015) On the sensitivity of entropy weight to sample statistics in assessing water quality: statistical analysis based on large stochastic samples. Environ Earth Sci 74:2185–2195.  https://doi.org/10.1007/s12665-015-4208-y CrossRefGoogle Scholar
  22. Wu Q, Zhou W (2008) Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction. Environ Geol 55(4):245–254.  https://doi.org/10.1007/s00254-007-1160-5 CrossRefGoogle Scholar
  23. Wu Q, Xie S, Pei Z, Ma J (2007) A new practical methodology of the coal floor water bursting evaluating III: the application of ANN vulnerable index method based on GIS. J China Coal Soc 32(12):1301–1306Google Scholar
  24. Wu Q, Xu H, Pang W (2008) GIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of North China. Environ Geol 54:937–943.  https://doi.org/10.1007/s00254-007-0887-3 CrossRefGoogle Scholar
  25. Wu Q, Liu Y, Liu D, Zhou W (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44:591–600.  https://doi.org/10.1007/s00603-011-0146-5 CrossRefGoogle Scholar
  26. Wu Q, Zhao D, Wang Y, Shen J, Mu W (2017) Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory. Hydrogeol J 25:2089–2103.  https://doi.org/10.1007/s10040-017-1614-0 CrossRefGoogle Scholar
  27. Xu F, Long R, Xia Y, Xie S (1991) Quantitative assessment and prediction of geological structures in coal mine. J China Coal Soc 16(4):93–102Google Scholar
  28. Zhao D, Wu Q, Cui F, Xu H, Zeng Y, Cao Y, Du Y (2018) Using random forest for the risk assessment of coal-floor water inrush in Panjiayao coal mine, northern China. Hydrogeol J 26(7):2327–2340.  https://doi.org/10.1007/s10040-018-1767-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Longqing Shi
    • 1
  • Mei Qiu
    • 1
    • 2
    Email author
  • Ying Wang
    • 1
  • Xingyue Qu
    • 1
  • Tianhao Liu
    • 1
  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Sciences & EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and TechnologyQingdaoChina

Personalised recommendations