Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2091–2103 | Cite as

Surfactant-enhanced air sparging with viscosity control for heterogeneous aquifers

  • Hobin Kwon
  • Jae-Kyeong Choi
  • Michael D. Annable
  • Heonki KimEmail author
Paper
  • 37 Downloads

Abstract

The effects of surface-tension and/or viscosity changes in groundwater on the remedial performance of air sparging for heterogeneous aquifers were investigated. The study used a one-dimensional (1-D) column and a two-dimensional (2-D) flow-chamber aquifer model. To introduce a heterogeneous setting, the middle part of the model was packed with a finer soil [LKZ, low hydraulic conductivity (K) zone]. Fluorescein sodium salt was used at 200 mg/L for all experiments as a surrogate contaminant. For the 1-D column experiments, the rate of fluorescence decay in the LKZ during surfactant-enhanced air sparging (SEAS) was significantly higher than during the standard air sparing (AS) process without additives; the area of fluorescence loss, measured after 17 h of air sparging (including ozone), was double and triple that of the conventional AS process, for SEAS without thickener (SEAS1) and SEAS with thickener (SEAS2), respectively. Experimental results using the 2-D chamber also confirmed the enhanced air intrusion into the LKZ during the SEAS process. The air fluxes through the LKZ increased by 47 and 103% for the SEAS1 and SEAS2 compared to AS, respectively; and 79 and 90% of fluorescence disappeared in the LKZ during ozone injection for SEAS1 and SEAS2, respectively, whereas only 10% disappeared for AS during the 3-h experimental period. The findings of this study indicate that the AS process, at low surface tension and increased groundwater viscosity may be a viable alternative to the conventional AS process for aquifers of heterogeneous hydrogeological formations.

Keywords

Contamination Laboratory experiment Heterogeneity Multiphase flow Remediation 

Renforcement par un surfactant de l’injection d’air sous contrôle de la viscosité dans des aquifères hétérogènes

Résumé

L’ effet des variations de tension superficielle et/ou de viscosité dans une eau souterraine sur la performance remédiative de l’injection d’air dans les aquifères hétérogènes est étudié. L’étude a utilisé une colonne uni-dimensionnelle (1-D) et un modèle d’aquifère bidimensionnel (2-D) à chambre d’écoulement. Pour introduire une condition d’hétérogénéité, la partie centrale du modèle a été remplie avec un sol plus fin [ZBC, zone de basse conductivité (C) hydraulique]. Un sel sodique de la fluorescéine a été utilisé, à raison de 200 mg/L, dans toutes les expériences, comme substitut de contaminant. Au cours des expériences sur la colonne 1-D, le taux de dégradation de la fluorescéine dans la ZBC durant une injection d’air renforcée par un surfactant (IARS) a été significativement plus élevé que dans le procédé standard d’injection d’air sans additifs; la zone ayant perdu sa fluorescence, mesurée après 17 heures d’injection d’air (contenant de l’ozone), a été le double et le triple de celle liée au procédé IA conventionnel, pour un IARS sans épaississant (IARS 1) et un IARS avec épaississant (IARS 2) respectivement. Les résultats expérimentaux utilisant la chambre 2D confirment à leur tour le renforcement de l’injection d’air au sein de la ZBC dans le procédé IARS. Le flux d’air à travers la ZBC a cru respectivement de 47 et de 103% pour le IARS1 et le IARS 2 par rapport à une IA; et la fluorescence a disparu à 79et 90% dans la ZBC pendant l’injection d’ozone dans le cas d’une IARS 1 et d’une IARS 2 respectivement, contre 10% seulement pour une IA conduite pendant la période expérimentale de 3 h. Les conclusions de cette étude indiquent que le procédé IA, associé à une tension superficielle basse et une viscosité accrue de l’eau souterraine, peut être une alternative viable au procédé IA conventionnel, pour les aquifères des formations hydrogéologiques hétérogènes.

Aireación mejorada con surfactantes con control de viscosidad para acuíferos heterogéneos

Resumen

Se investigaron los efectos de la tensión de la superficie y/o los cambios de viscosidad en el agua subterránea sobre el rendimiento correctivo de la dispersión del aire para acuíferos heterogéneos. El estudio utilizó una columna unidimensional (1-D) y un modelo de acuífero de cámara de flujo bidimensional (2-D). Para introducir una configuración heterogénea, la parte central del modelo se llenó con un suelo más fino [LKZ, zona de baja conductividad hidráulica (K)]. La sal sódica de fluoresceína se usó a 200 mg/L para todos los experimentos como un contaminante sustituto. Para los experimentos de columna 1-D, la tasa de decaimiento por fluorescencia en el LKZ durante el proceso de inyección de aire con tensioactivos mejorados (SEAS) fue significativamente más alta que durante el proceso estándar de inyección de aire sin aditivos; el área de pérdida de fluorescencia, medida después de 17 horas de inyección de aire (incluyendo el ozono), fue el doble y el triple de la del proceso convencional de inyección de aire con tensioactivos, para el SEAS sin espesante (SEAS1) y el SEAS con espesante (SEAS2), respectivamente. Los resultados experimentales con la cámara 2-D también confirmaron la mayor intrusión de aire en el LKZ durante el proceso SEAS. Los flujos de aire a través de la LKZ aumentaron un 47 y un 103% para la SEAS1 y la SEAS2 en comparación con la AS, respectivamente; y el 79 y el 90% de la fluorescencia desapareció en la LKZ durante la inyección de ozono para la SEAS1 y la SEAS2, respectivamente, mientras que sólo el 10% desapareció para la AS durante el período experimental de 3 h. Los resultados de este estudio indican que el proceso AS, a baja tensión superficial y mayor viscosidad del agua subterránea, puede ser una alternativa viable al proceso AS convencional para acuíferos de formaciones hidrogeológicas heterogéneas.

非均质含水层粘度控制的表面活性剂强化地下水曝气技术

摘要

研究了地下水中表面张力和/或粘度变化对非均质含水层地下曝气修复性能的影响。该研究使用了一维(1-D)柱和二维(2-D)流动试验含水层模型。为了引入异质环境,模型的中间部分填充了颗粒更细的土壤 [LKZ,低水力传导率(K)区域]。对于所有实验,200 mg/L荧光素钠盐被认作替代污染物。对于1-D柱实验,在表面活性剂强化地下水曝气(SEAS)期间LKZ中荧光衰减的速率显著高于没有添加剂的标准地下水曝气(AS)过程中的荧光衰减速率;在17小时的地下水曝气(包括臭氧)后,SEAS无增稠剂(SEAS1)和SEAS增稠剂(SEAS2)添加后测得的荧光损失面积分别是传统AS工艺的两倍和三倍。使用2-D试验的实验结果也证实了在SEAS过程中强化的空气侵入LKZ。与AS相比,SEAS1和SEAS2通过LKZ的空气流量分别增加了47%和103%;在SEAS1和SEAS2的臭氧注入期间,LKZ中分别有79%和90%的荧光消失,而在3小时的实验期间,AS试验中仅有10%消失。该研究的结果表明,低表面张力和增加地下水粘度的AS过程可以作为非均质水文地质含水层的传统AS过程的可行替代方案。

Purga de ar reforçada por surfactante com controle de viscosidade para aquíferos heterogêneos

Resumo

Os efeitos de mudanças de tensão superficial e/ou de viscosidade em águas subterrâneas no desempenho de remediação de aspersão de ar para aquíferos heterogêneos foram investigados. O estudo utilizou uma coluna unidimensional (1-D) e um modelo de aquífero de câmara de fluxo bidimensional (2-D). Para introduzir um ambiente heterogêneo, a parte central do modelo foi preenchida com um solo mais fino [LKZ, baixa zona de condutividade hidráulica (K)]. O sal de sódio da fluoresceína foi usado a 200 mg/L para todas os experimentos como um contaminante substituto. Para os experimentos em coluna 1-D, a taxa de decaimento da fluorescência no LKZ durante a aspersão de ar com aumento de surfactante (AAAS) foi significativamente maior do que durante o processo aspersão de ar (AA) padrão sem aditivos; a área de perda de fluorescência, medida após 17 horas de aspersão de ar (incluindo ozônio), foi o dobro e triplo do processo AA convencional, para AAAS sem espessante (AAAS1) e AAAS com espessante (AAAS2), respectivamente. Resultados experimentais usando a câmara 2-D também confirmaram a intrusão de ar aprimorada no LKZ durante o processo AAAS. Os fluxos de ar através do LKZ aumentaram 47 e 103% para o AAAS1 e AAAS2 em comparação com o AA, respectivamente; e 79 e 90% de fluorescência desapareceram no LKZ durante a injeção de ozônio para AAAS1 e AAAS2, respectivamente, enquanto apenas 10% desapareceram para AA durante o período experimental de 3 h. As descobertas deste estudo indicam que o processo AA, em baixa tensão superficial e aumento da viscosidade da água subterrânea, pode ser uma alternativa viável ao processo Aa convencional para aquíferos de formações hidrogeológicas heterogêneas.

Notes

Funding Information

This research was supported by the Hallym University Research Fund, 2018 (HRF-201804-008).

References

  1. Adams JA, Reddy KR (2000) Removal of dissolved- and free-phase benzene pools from ground water using in situ air sparging. J Environ Eng 126:697–707CrossRefGoogle Scholar
  2. Angell KG (1992) In situ remedial methods: air sparging. Natl Environ J 2(1):20–23Google Scholar
  3. Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review of case studies. J Hazard Mater 72:101–119CrossRefGoogle Scholar
  4. Benner ML, Mohtar RH, Lee LS (2002) Factors affecting air sparging remediation systems using field data and numerical simulation. J Hazard Mater 95(3):305–329CrossRefGoogle Scholar
  5. Brown RA, Jasiulewicz F (1992) Air sparging: a new model for remediation. Pollut Eng 24(13):52–55Google Scholar
  6. Chao KP, Ong SK, Protopapas A (1998) Water-to-air mass transfer of VOCs: laboratory-scale air sparging system. J Environ Eng 124(11):1054–1060CrossRefGoogle Scholar
  7. Chao KP, Ong SK, Huang MC (2008) Mass transfer of VOCs in laboratory-scale air sparging tank. J Hazard Mater 152:1098–1107CrossRefGoogle Scholar
  8. Chen Y-G, Ye W-M, Xie Z-J, Chen B, Cui Y-J (2012) Remediation of saturated Shanhai sandy silt contaminated with p-xylene using air sparging. Nat Hazards 62(3):1005–1020CrossRefGoogle Scholar
  9. Corey AT (1994) Mechanics of immiscible fluids in porous media, water resources publications. Water Resources Publ., Highlands Ranch, CO, pp 47–48Google Scholar
  10. Di Julio SS, Drucker AS (2002) Air-sparging remediation: a study on heterogeneity and air mobility reduction. J Hazard Subst Res 3:7-1–7-20Google Scholar
  11. Heron G, Gierke JS, Faulkner B, Mravik S, Wood L, Enfield CG (2002) Pulsed air sparging in aquifers contaminated with dense nonaqueous phase liquids. Ground Water Monit R 22(4):73–82Google Scholar
  12. Ji W, Dahmani A, Ahlfeld DP, Lin JD, Hill E III (1993) Laboratory study of air sparging: airflow visualization. Ground Water Monit R 13(4):115–126CrossRefGoogle Scholar
  13. Johnson RL, Johnson PC, McWhorter DB, Hinchee RE, Goodman I (1993) An overview of in situ air sparging. Ground Water Monit R. 13(4):127–135CrossRefGoogle Scholar
  14. Johnson PC, Das A, Bruce C (1999) Effect of flow rate changes and pulsing on the treatment of source zones by in situ air sparging. Environ Sci Technol 33:1726–1731CrossRefGoogle Scholar
  15. Kim H, Annable MD (2006) Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. J Environ Sci Health Part A 41(12):2799–2811CrossRefGoogle Scholar
  16. Kim H, Choi K–M, Moon J–W, Annable MD (2006) Changes in air saturation and air-water interfacial area during surfactant-enhanced air sparging in saturated sand. J Contam Hydrol 88:23–35CrossRefGoogle Scholar
  17. Kim H, Annable MD, Rao PSC, Cho J (2009) Laboratory evaluation of surfactant-enhanced air sparging for perchloroethene source mass depletion from sand. J Environ Sci Health Part A 44(4):406–413CrossRefGoogle Scholar
  18. Kim H, Yang S, Yang H (2013) Surfactant-enhanced ozone sparging for removal of organic compounds from sand. J Environ Sci Health Part A 48(5):526–533CrossRefGoogle Scholar
  19. Kim J, Kim H, Annable MD (2015) Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments. J Contam Hydrol 172:1–9CrossRefGoogle Scholar
  20. Kim H, Ahn D, Annable MD (2016) Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: bench-scale experiments. J Contam Hydrol 184:25–34CrossRefGoogle Scholar
  21. Kirtland BC, Aelion CM (2000) Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. J Contam Hydrol 41(3–4):367–383CrossRefGoogle Scholar
  22. Koltuniak DL (1986) In-situ air stripping cleans contaminated soil. Chem Eng 93:30–31Google Scholar
  23. Lee H, Lee Y, Kim J, Kim C (2014) Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea. Int J Environ Res Public Health 11(9):8806–8824CrossRefGoogle Scholar
  24. McCray JE, Falta RW (1996) Defining the air sparging radius of influence for groundwater remediation. J Contam Hydrol 24:25–52CrossRefGoogle Scholar
  25. McCray JE, Falta RW (1997) Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water 35(1):99–110CrossRefGoogle Scholar
  26. Mohamed AMI, El-Menshawy N, Saif AM (2007) Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement. J Environ Manag 83:339–350CrossRefGoogle Scholar
  27. Neriah AB, Paster A (2016) Effect of temporal changes in air injection rate on air sparing performance groundwater remediation. Groundwater 54(6):851–860CrossRefGoogle Scholar
  28. Qin CY, Zhao YS, Su Y, Zheng W (2013a) Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction. Water Environ Res 85(2):133–140CrossRefGoogle Scholar
  29. Qin CY, Zhao YS, Li LL, Zheng W (2013b) Mechanisms of surfactant-enhanced air sparging in different media. J Environ Sci Health Part A 48(9):1047–1055CrossRefGoogle Scholar
  30. Qin CY, Zhao YS, Zheng W (2014) The influence zone of surfactant-enhanced air sparging in different media. Environ Technol 35(10):1190–1198CrossRefGoogle Scholar
  31. Reddy KR, Tekola L (2004) Remediation of DNAPL source zones in groundwater using air sparging. Land Contam Reclam 12:67–83CrossRefGoogle Scholar
  32. Rogers SW, Ong SK (2000) Influence of porous media, airflow rate, and air channel spacing on benzene NAPL removal during air sparging. Environ Sci Technol 34:764–770CrossRefGoogle Scholar
  33. Tomlinson DW, Thomson NR, Johnson RL, Redman JD (2003) Air distribution in the Borden aquifer during in situ air sparging. J Contam Hydrol 67(1–4):113–132CrossRefGoogle Scholar
  34. Tsai YJ (2007) Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging. J Hazard Mater 142:315–323CrossRefGoogle Scholar
  35. USEPA (2001) A citizen’s guide to soil vapor extraction and air sparging. EPA 542-F-01-006, Office of Solid Waste and Emergency Response, Washington, DC. http://cluin.org/download/citizens/citsve.pdf. Accessed 23 August 2018
  36. USEPA (2010) Green remediation best management practice: soil vapor extraction & air sparging. EPA 542-F-10-007; Office of Solid Waste and Emergency Response: Washington DC. https://clu-in.org/greenremediation/docs/GR_factsheet_SVE_AS_032410.pdf. Accessed 23 August 2018
  37. Yang X, Beckmann D, Fiorenza S, Niedermeier C (2005) Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ Sci Technol 39:7279–7286CrossRefGoogle Scholar
  38. Zhou YP, Wang ZQ, Li MM (2013) Remediation performance of petroleum polluted groundwater by in site air sparging technologies. Adv Mater Res 726:4045–4048CrossRefGoogle Scholar
  39. Zheng W, Zhao YS, Qin CY, Wang B, Qu ZH (2010) Study on mechanisms and effect of surfactant-enhanced air sparging. Water Environ Res 82:2258–2264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hobin Kwon
    • 1
  • Jae-Kyeong Choi
    • 1
  • Michael D. Annable
    • 2
  • Heonki Kim
    • 1
    Email author
  1. 1.Department of Environmental Science and BiotechnologyHallym UniversityChuncheonSouth Korea
  2. 2.Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations