Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2045–2059 | Cite as

Assessment of regional flow type and groundwater sensitivity to pollution using hydrograph analyses and hydrochemical data of the Selita and Blue Eye karst springs, Albania

  • Romeo Eftimi
  • Peter MalíkEmail author
Paper
  • 66 Downloads

Abstract

The assessment of groundwater vulnerability/sensitivity to pollution in karstic aquifers usually concentrates on recognition of fast-flow (conduit flow) and slow-flow (diffuse flow) components or intermediate regimes and their ratio in the total discharged volume. Analysis of master recession curves and correlation between physical characteristics of springs and temporal variations in spring water chemistry were applied to two major karst springs of Albania: Selita Spring (mean discharge 510 L s−1), exploited for Tirana water supply, and Blue Eye Spring (mean discharge 18,182 L s−1), used for electric power generation. These springs are recharged by precipitation in two very different karst areas with respect to their karstification degree, which influences also groundwater circulation patterns within karstic aquifers. Different regional groundwater flow types are subsequently reflected in the different spring hydrographs and in the temporal hydrochemical variations. Based on the spring master recession curves, Selita Spring is characterised as a conduit spring where the fast-flow component represents the majority of groundwater flow, and its catchment area should be linked with a high degree of sensitivity to pollution. On the other hand, in the discharge regime of Blue Eye Spring, the slow-flow component dominates, and although having a discharge of one order of magnitude bigger, this is a diffuse-flow spring and its catchment area should have lower sensitivity to potential pollution. The same results were also confirmed by statistical treatment of the temporal variations in spring water chemistry and evidence of surface karst phenomena in their recharge areas.

Keywords

Karst Recession curves Hydrochemistry Groundwater flow Albania 

Evaluation des types d’écoulements régionaux et de la sensibilité des eaux souterraines aux pollutions par l’utilisation des analyses d’hydrogrammes et des données hydrochimiques des sources karstiques Selita et Blue Eye, Albanie

Résumé

L'évaluation de la vulnérabilité/sensibilité des eaux souterraines à la pollution dans les aquifères karstiques se concentre en général sur l’identification des composantes d’écoulements rapides (écoulement en conduit) et lents (écoulements diffus) ou des régimes intermédiaires et leurs parts dans les volumes totaux écoulés. L’analyse des courbes maîtresse de récession et de la corrélation entre les caractéristiques physiques des sources et les variations temporelles de la chimie des eaux de source ont été appliquées à deux sources karstiques majeures d’Albanie : la source Selita (débit moyen 510 L s–1), exploitée pour l’approvisionnement en eau de Tirana et la source Blue Eye (débit moyen 18,182 L s–1), utilisé pour la production d’électricité. Ces sources sont rechargées par les précipitations dans deux zones karstiques très différentes vis à vis de leur degré de karstification, ce qui influence aussi les schémas de circulation des eaux souterraines au sein des aquifères karstiques. Différents types d’écoulement souterrain régionaux sont par suite reflétés dans les hydrogrammes de source différents et dans les variations temporelles hydrochimiques. Sur la base des courbes maitresse de récession, la source Selita se caractérise comme une source de conduit où la composante d’écoulements rapides représente la majeure partie de l’écoulement souterrain, et son bassin d’alimentation devrait être lié à un haut niveau de sensibilité à la pollution. Par ailleurs pour les régimes d’écoulements de la source Blue Eye, la composante d’écoulements lents domine, et bien qu’ayant des débits d’un ordre de grandeur supérieur, cette source est de type à écoulement diffus et son bassin d’alimentation devrait avoir une sensibilité inférieure à des pollutions potentielles. Les mêmes résultats ont été confirmés par traitement statistiques des variations temporelles de la chimie de l’eau de la source et des signes de phénomènes karstiques dans les zones de recharge.

Evaluación del tipo de flujo regional y de la sensibilidad de las aguas subterráneas a la contaminación utilizando análisis hidrográficos y datos hidroquímicos de los manantiales kársticos Selita y Blue Eye, Albania

Resumen

La evaluación de la vulnerabilidad/sensibilidad de las aguas subterráneas a la contaminación en los acuíferos kársticos suele concentrarse en el reconocimiento de los componentes de flujo rápido (flujo de conducto) y de flujo lento (flujo difuso) o regímenes intermedios y su relación con el volumen total descargado. El análisis de las curvas patrón de recesión y la correlación entre las características físicas de los manantiales y las variaciones temporales en la química del agua del manantial se aplicaron a dos de los principales manantiales kársticos de Albania: el manantial Selita (descarga media de L s–1), explotado para el suministro de agua de Tirana, y el manantial Blue Eye (descarga media de 18,182 L s–1), utilizado para la generación de energía eléctrica. Estos manantiales son recargados por la precipitación en dos áreas kársticas muy diferentes con respecto a su grado de karstificación, lo que influye también en los patrones de circulación de las aguas subterráneas dentro de los acuíferos kársticos. Diferentes tipos de flujo de agua subterránea regional se reflejan posteriormente en los diferentes hidrogramas de los manantiales y en las variaciones hidroquímicas temporales. Basado en las curvas patrón de recesión del manantial, Selita Spring se caracteriza como un manantial de conducto donde el componente de flujo rápido representa la mayor parte del flujo de agua subterránea, y su área de captación debe estar vinculada con un alto grado de sensibilidad a la contaminación. Por otro lado, en el régimen de descarga del Blue Eye Spring, domina el componente de flujo lento, y aunque tiene una descarga de un orden de magnitud mayor, se trata de un manantial de flujo difuso y su área de captación debería tener menor sensibilidad a la contaminación potencial. Los mismos resultados también fueron confirmados por el tratamiento estadístico de las variaciones temporales en la química del agua de manantial y la evidencia de fenómenos kársticos superficiales en sus áreas de recarga.

利用水文分析和阿尔巴尼亚喀斯特Selita和Blue Eye泉的水化学数据评估区域水流类型和地下水对污染的敏感性

摘要

岩溶含水层中地下水脆弱性/污染敏感性的评估通常聚焦于识别快速流(管道流)和慢速流(扩散流)组分或中间流动及其在总排泄量中的比率。主退水曲线分析以及泉物理特性与泉水水化学时间变化之间的相关性被应用于阿尔巴尼亚的两个主要岩溶泉:用于地拉那供水Selita 泉(平均排泄量510 L s–1), 和用于发电的Blue Eye 泉(平均排泄量18,182 L s–1)。这些泉在两个截然不同岩溶率的喀斯特地区得到降水补给, 这也影响了岩溶含水层内的地下水循环模式。不同的泉水水文图和水化学的时间变化随后反映了不同的区域地下水流动类型。基于泉水主退水曲线, Selita泉具有管道流特征, 其中快速流代表了大部分地下水流量, 其集水区域应与污染的高度敏感性相关。另一方面, 在Blue Eye泉的排泄系统中, 缓慢流占主导地位, 虽然排泄量大一个数量级, 但仍是一个扩散流动泉, 其集水区应具有较低的潜在污染敏感性。统计获得的泉水水化学时间变化特征和补给区表层岩溶现象的证据, 也证实了相同的结果。

O uso de hidrogramas e dados hidrogeoquímicos para a avaliação do tipo de fluxo e a susceptibilidade da água subterrânea à contaminação nas nascentes em carste de Selita e Blue Eye, Albânia

Resumo

A avaliação da vulnerabilidade/sensibilidade das águas subterrâneas à poluição nos aquíferos cársticos concentra-se habitualmente na identificação dos componentes de fluxo rápido (fluxo de conduto) e fluxo lento (fluxo difuso) ou regime intermediário e a sua relação com o volume total de descarga. A análise de curvas mestre de recessão e correlação entre as características físicas de nascentes e as variações temporais na hidroquímica de nascente foram aplicadas às duas principais fontes cársticas da Albânia: nascente Selita (descarga média de 510 L s–1), explorada para o abastecimento de água de Tirana e nascente Blue Eye (vazão média 18,182 L s–1), utilizada para geração de energia elétrica. Estas nascentes são recarregadas por precipitação em duas áreas cársticas muito diferentes em relação ao seu grau de carstificação o que também influencia os padrões de circulação das águas subterrâneas dentro de aquíferos cársticos. Os diferentes tipos regionais de fluxo de água subterrânea são refletidos em diferentes hidrogramas de nascentes e nas variações hidroquímicas temporais. Com base nas curvas mestre de recessão da primavera, a nascente Selita é caracterizada como uma nascente de conduto onde a componente de fluxo rápido representa a maior parte do fluxo de água subterrânea, e sua área de captação deve estar associada a um alto grau de sensibilidade à poluição. Por outro lado, no regime de descarga da nascente Blue Eye, o componente de fluxo lento domina, e apesar de ter a descarga em uma ordem de grandeza maior, esta é uma fonte de fluxo difuso e a sua área de captação deve ter menor sensibilidade à poluição potencial. Os mesmos resultados foram também confirmados mediante o tratamento estatístico das variações temporais da hidroquímica de nascente e pela evidência de fenômenos cársticos superficiais em suas áreas de recarga.

Hodnotenie regionálneho typu prúdenia podzemnej vody a jej senzitivity voči znečisteniu pomocou analýzy výtokových čiar a hydrochemických vlastností vôd krasových prameňov Selita a Blue Eye, Albánsko

Abstrakt

Posudzovanie stupňa zraniteľnosti podzemnej vody/jej citlivosti na prípadnú kontamináciu vychádza v prípade krasových zvodnencov z detekcie rýchlych odtokových zložiek prúdenia (kanálových subrežimov), zastúpenia odtokových zložiek s pomalým prietokom (difúzny odtok) a prípadnej prítomnosti prechodných subrežimov na celkovom odtokovom množstve. Analýza výtokových čiar prameňov a korelácia jej výsledkov s ďalšími fyzikálno-chemickými vlastnosťami vôd boli aplikované na podzemné vody dvoch veľkých krasových prameňov v Albánsku: prameňa Selita (priemerná výdatnosť 510 L s–1), využívaného na zásobovanie mesta Tirana pitnou vodou a prameňa Blue Eye (priemerná výdatnosť 18,182 L s–1), využívaného na výrobu elektrickej energie. Tieto pramene sú dopĺňané zrážkovou vodou v dvoch od seba veľmi odlišných krasových oblastiach, najmä vzhľadom na stupeň ich skrasovatenia. To následne ovplyvňuje aj spôsob obehu podzemnej vody v týchto krasových hydrogeologických štruktúrach. Rôzne regionálne typy prúdenia podzemnej vody sa následne prejavujú na forme ich hydrogramov ako aj na variabilite chemického zloženia vôd v čase. Na základe typickej výtokovej čiary možno režim podzemných vôd prameňa Selita charakterizovať ako vyslovene krasovo–kanálový, kde zložka rýchleho odtoku reprezentuje väčšinu jeho celkovej výdatnosti. Infiltračnej oblasti prameňa Selita by preto mal byť prisudzovaný vysoký stupeň senzitivity voči potenciálnej kontaminácii. Na druhej strane vo výtokovej čiare prameňa Blue Eye dominuje zložka pomalého odtoku, a hoci je jeho výdatnosť až o jeden rád vyššia, ide o prameň s difúznym (laminárnym) odtokom a jej infiltračná oblasť by mala byť menej zraniteľná. Uvedené výsledky boli zároveň v súlade s charakterom časových zmien chemického zloženia vôd, ako aj s geomorfologickými charakteristikami povrchových krasových javov v infiltračných oblastiach týchto prameňov.

Notes

Acknowledgements

The authors are also grateful to Timothy J. Hazlett, Gareth James Davies and two other anonymous reviewers for their helpful comments and advice aimed at improvements to this paper.

Funding information

The authors gratefully acknowledge the support of the Ministry of Education, Science, Research and Sport of the Slovak Republic and for the EU structural funds (ASFEU) through the project ‘Výskum dopadu klimatickej zmeny na dostupné množstvá podzemných vôd v SR a vytvorenie expertného GIS [Research into the impact of climate change on the available groundwater resources in the Slovak Republic and the creation of expert GIS]’ (ITMS code: 26220220002, Operational Programme Research and Development).

References

  1. Appelo C, Postma D (1999) Geochemistry, groundwater and pollution. Balkema, Leiden, The Netherlands, 536 ppGoogle Scholar
  2. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mandip Hills, Somerset (Great Britain). J Hydrol 35(1–2):111–125CrossRefGoogle Scholar
  3. Bakalowicz M (1994) Water geochemistry: water quality and dynamics. In: Gibert J, Danielopol DL, Standford JA (eds) Groundwater ecology. Academic, San Diego, CA, pp 97–127Google Scholar
  4. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  5. Banzato C, Waele JD, Fiorucci A, Vigna B (2011) Study of springs and karst aquifers by monitoring and geochemical analysis. In: Mudry J, Zwahlen F, Bertrand C, LaMoreaux JW (eds) Proceedings of the 9th H2 Karst Conference on Limestone Hydrogeology, Besançon, France, 1–3 September 2011, pp 45–48Google Scholar
  6. Barnes BS (1939) The structure of discharge recession curves. Trans Am Geophys Union 20:721–725CrossRefGoogle Scholar
  7. Birk S, Liedl R, Sauter M (2004) Identification of localized recharge and conduit flow by combined analyses of hydraulic and physic-chemical springs responses (Urenbrunnen, SW-Germany). J Hydrol 286(1–4):179–193CrossRefGoogle Scholar
  8. Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci J Sci Hydrol 38(1–2):51–62CrossRefGoogle Scholar
  9. Boussinesq J (1877) Essai sur la theories des eax courantes [Essay on the theory of running waters]. Memoires presente par divers savants a l’Academie des Sciences de l’Institut National de France XXIII(1):252–260Google Scholar
  10. Boussinesq J (1904) Recherches théoriques sur l’écoulement des nappés d’eau infiltrées dans le sol sur le debit des sources [Theoretical research on the recharge of the groundwater infiltrated into the soil and the discharge of the springs]. J Mathématiques (5e)10:5–78Google Scholar
  11. Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs: application to the evaluation Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269.  https://doi.org/10.1016/S0022-1694(02)00418-3 CrossRefGoogle Scholar
  12. Drew D, Hötzl H (1999) Karst hydrogeology and human activities: impacts, consequences and implications. International Contributions to Hydrogeology 20, International Association of Hydrogeologists, Balkema, Rotterdam, The Netherlands, 322 ppGoogle Scholar
  13. Drouge C (1967) Essai de determination des composantes de l’éculmont des sources karstiques. Evolution de la capacité de retention par chenaux et fissures [Determination of the recharge components of karst springs. Estimation of retention capacity of the channels and fissures]. Chronique d’Hydrogeolgie 100, Bureau de Recherches Geologiques et Miniéres, ParisGoogle Scholar
  14. Drogue C (1972) Analyse statistique des hydrogrammes de décrues des sources karstiques [Statistical analyses of the recession curves of karstic springs]. J Hydrol 15:49–68CrossRefGoogle Scholar
  15. Eftimi R (2005) Hydrochemical characteristics of some lithologically different karst massifs of Albania, water resources and environmental problems in karst. In: Cvijić 2005: Proceedings of the international conference and field seminars, Belgrade-Kotor, Serbia, 13–22 September 2005, pp 499–504Google Scholar
  16. Eftimi R (2009) Investigation of recharge sources of Bistrica karst spring, the biggest spring of Albania, by means of environmental hydrochemical and isotope tracers. Conference “Sustainability of Karst Environment-Dinaric Karst and other Karst Regions”, Plitvice, Croatia, September 2009Google Scholar
  17. Eftimi R (2010) Hydrogeological characteristics of Albania. AQUAmundi Am01012:079–092Google Scholar
  18. Eftimi R, Zojer H (2015) Human impact on karst aquifers of Albania. Environ Earth Sci 2015(74):57–70CrossRefGoogle Scholar
  19. Eftimi R, Tafilaj I, Bisha G, Habilaj L (1986) Hydrogeological map of Albania, scale 1:200 000 (map sheet, in Albanian). Bull Shk Gjeol 4:133–148Google Scholar
  20. Eftimi R, Amataj S, Zoto J (2007) Groundwater circulation in two transboundary carbonate aquifers of Albania: their vulnerability and protection. In: Witkowski AJ, Kowalczyk J, Vrba J (eds ) Selected Papers on Hydrogeology 11, Taylor and Francis, London, pp 199–212Google Scholar
  21. Eftimi R, Akiti T, Amataj S, Benishke R, Zoto J, Zojer H (2017) Environmental hydrochemical and stabile isotope methods used to characterise the relation between karst water and surface water. Ital J Groundw.  https://doi.org/10.7343/as-2017-257
  22. Fiorillo F (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373(2009):290–301CrossRefGoogle Scholar
  23. Fiorillo F (2011) Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol J 19:1009–1019.  https://doi.org/10.1007/s10040-011-0737-y CrossRefGoogle Scholar
  24. Fiorillo F (2014) The recession of spring hydrographs, focused on karst aquifers. Water Resour Manag 28:1781–1805.  https://doi.org/10.1007/s11269-014-0597-z CrossRefGoogle Scholar
  25. Fiorillo F, Revellino P, Ventafridda G (2012) Karst aquifer draining during dry periods. J Cave Karst Stud 74(2):148–156.  https://doi.org/10.4311/2011JCKS0207 CrossRefGoogle Scholar
  26. Ford DC, Williams P (2007) Karst geomorphology and hydrology. Wiley, Chichester, UK, 562 ppGoogle Scholar
  27. Forkasiewicz J, Paloc H (1967) Le régime de tarissement de la Foux de la Vis. Etude préliminaire [The recession discharge regime of Foux de la Vis. Preliminary investigations]. AIHS Coll. Hydrol. Roches Fissurées. 1:213–228Google Scholar
  28. Giacopetti M, Materazzi M, Pambianchi G, Posavec K (2017) Analysis of mountain springs discharge time series in the Tennacola stream catchment (Central Apennine, Italy). Environ Earth Sci 76:20.  https://doi.org/10.1007/s12665-016-6339-1 CrossRefGoogle Scholar
  29. Goldscheider N (2002) Hydrogeology and vulnerability of karst systems: examples from the Northern Alps and Swabian Alb. PhD Thesis, Univ. Karlsruhe, Germany, 236 ppGoogle Scholar
  30. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13(4):555–564CrossRefGoogle Scholar
  31. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. International Contribution to Hydrogeology 26. Taylor and Francis, London, 264 ppGoogle Scholar
  32. Goldscheider N, Pronk M, Zopfi J (2010) New insights into the transport of sediments and microorganisms in karst groundwater by continuous monitoring of particle-size distribution. Geol Croatica 63(2):137–142Google Scholar
  33. Grasso DA, Jeannin P-Y, Zwahlen F (2003) A deterministic approach to the coupled analysis of karst springs hydrographs and chemographs. J Hydrol 271:65–76CrossRefGoogle Scholar
  34. Gregor M, Malík P (2012a) Construction of master recession curve using genetic algorithms. J Hydrol Hydromechan 60(1):3–15.  https://doi.org/10.2478/v10098-012-0001-8 CrossRefGoogle Scholar
  35. Gregor M, Malík P (2012b) RC 4.0 User’s manual. 36 pp. http://www.hydrooffice.org. Accessed April 2019
  36. Gregor M, Malík P (2014) Using hybrid genetic algorithms in assembling master recession curves of karst springs. Environ Earth Sci (2014):83–94.  https://doi.org/10.1007/978-3-319-06139-9_6
  37. Hall FR (1968) Base-flow recessions: a review. Water Resour Res 4(5):973–983CrossRefGoogle Scholar
  38. Jacobson RL, Langmuir D (1974) Controls on the quality variations of some carbonate spring water. J Hydrol 23(3–4):247–265CrossRefGoogle Scholar
  39. Király L (2003) Karstification and groundwater flow/speleogenesis and evolution of karst aquifers. In: Gabrovšek F (ed) Evolution of karst: from prekarst to cessation. Zalozba ZRC, Postojna-Ljubljana, Slovenia, pp 155–190Google Scholar
  40. Kovács A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modelling approach. PhD Thesis, Université de Neuchâtel, Switzerland, 131 ppGoogle Scholar
  41. Kovács A, Perrochet P (2008) A quantitative approach to spring hydrograph decomposition. J Hydrol 352(1–2):16–29CrossRefGoogle Scholar
  42. Kovács A, Perrochet P, Király L, Jeannin P-Y (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303:152–164.  https://doi.org/10.1016/j.jhydrol.2004.08.023 CrossRefGoogle Scholar
  43. Kresic N, Bonaci O (2010a) Spring discharge hydrograph, chap 4. In: Groundwater hydrology of springs: engineering, theory, management and sustainability. Elsevier, Amsterdam, pp 129–163Google Scholar
  44. Kresic N, Stevanovic Z (2010b) Groundwater hydrology of springs: engineering, theory, management and sustainability. Elsevier, Amsterdam, 573 ppGoogle Scholar
  45. Krothe NC, Libra RD (1983) Sulfur isotopes and hydrochemical variations in spring waters of southern Indiana, U.S.A. J Hydrol 61(1):267–283CrossRefGoogle Scholar
  46. Kullman E (1980) L’evaluation du regime des eaux souterraines dans les roches carbonatiques du Mésozoiques des Carpates Occidentales par les courbes de tarrissement des sources [The evaluation of the groundwater regime in the carbonatic rocks of the Mesozoic of the Western Carpathians by recession curves]. Geologické práce [Geological work], vol 79. Geologický ústav Dionýza Štúra, Bratislava, Slovakia, pp 237–262Google Scholar
  47. Kullman E (1990) Krasovo-puklinové vody [Karst-fissure waters] Geologický ústav Dionýza Štúra, Bratislava, Slovakia, 184 ppGoogle Scholar
  48. Kullman E (2000) Nové metodické prístupy k riešeniu ochrany a ochranných pásiem zdrojov podzemných vôd v horninových prostrediach s krasovo-puklinovou priepustnosťou [New methods in groundwater protection and delineation of protection zones in fissure-karst rock environments (in Slovak with English summary)]. Podzemná voda 6(2):31–41Google Scholar
  49. Lakey B, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32(3):721–731CrossRefGoogle Scholar
  50. Liedl R, Sauter M (1998) Modelling of aquifer genesis and heat transport in karst systems. Bull Hydrogéol 16:185–120Google Scholar
  51. Liedl R, Renner S, Sauter M (1998) Obtaining information about fracture geometry from heat flow data in karst systems. Bull Hydrogéol 16:143–153Google Scholar
  52. Liňán Baena C, Andreo B, Mudry J, Carrasco Cantos F (2009) Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: the Sierra de Las Nieves karst aquifer, southern Spain. Hydrogeol J 17(4):843–853CrossRefGoogle Scholar
  53. Liu Z, Groves C, Yuan D, Meiman J (2004) South China karst aquifers storm-scale hydrochemistry. Ground Water 42(4):491–499CrossRefGoogle Scholar
  54. Luhman AJ, Covington MD, Peters AJ, Alexander CC, Anger CT, Green JA, Runkel AC, Calvin A Jr (2011) Classification of thermal patterns at karst springs and cave streams. Ground Water 49(3):324–335CrossRefGoogle Scholar
  55. Maillet E (1905) Essais d’Hydraulique Souteeraine et Fluviale [Hydraulics testing of groundwater and surface water]. Herman, Paris, 218 ppGoogle Scholar
  56. Malík P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mts., Slovakia. Environ Geol 2007(51):707–711.  https://doi.org/10.1007/s00254-006-0384-0 Google Scholar
  57. Malík P (2015) Evaluating discharge regime of karst aquifers, chap 7. In: Stevanović Z (ed) (2015) Karst aquifers: characterization and engineering. Professional Practice in Earth Sciences series, Springer, Cham, Switzerland, 687 pp.  https://doi.org/10.1007/978-3-319-12850-4_7
  58. Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 2012(65):2245–2257.  https://doi.org/10.1007/s12665-012-1596-0 CrossRefGoogle Scholar
  59. Mandel S (1967) A conceptual model of karstic erosion by groundwater. In: International symposium on hydrology of fractured rocks. Dubrovnik, October 1965, AIH-UNESCO, Wallingford, UK and Paris, pp 662–664Google Scholar
  60. Martin JB, Dean RW (1999) Temperature as a natural tracer of short residence times for groundwater in karst aquifers. In: Karst modeling. Karst Water Institute Spec. Publ. 5, Karst Water Institute, Leesburg, VA, pp 236–242Google Scholar
  61. Matiatos I, Alexopoulos A (2013) Analyses of temporal hydrochemical and isotopic variations in spring waters of eastern Peloponnesus (Greece). Proceedings of 13th International Congress, Chania, Sept. 2013. Bull Geol Soc Greece XLVII:750–760Google Scholar
  62. Milanovic PT (1981) Karst hydrogeology. Water Resources Publ., Littleton, CO, 434 ppGoogle Scholar
  63. Newson MD (1971) A model of subterranean limestone erosion in the British Isles based on hydrology. Trans Inst Br Geogr 54:55–70CrossRefGoogle Scholar
  64. Padilla A, Pulido Bosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32:267–277CrossRefGoogle Scholar
  65. Perrin J, Jeannin P-Y, Cornaton F (2007) The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland. J Hydrol 332(1–2):158–173CrossRefGoogle Scholar
  66. Scanlon BR, Thrailkill J (1987) Chemical similarities among physically distinct types in a karst terrain. J Hydrol 89:259–279Google Scholar
  67. Schöeller H (1948) Le régime hydrogéologique des calcaires éocénes du synclinal du Dyr el kef (Tunisie) [Hydrogeological regime of the Eocene limestones of the Dyr el kef syncline (Tunisia)]. Bull Soc Géol Fr 5(18):167–180Google Scholar
  68. Schöeller H (1965) Hydrodynamique dans le Karst: hydrogeologie des roches fissurées [Hydrodynamics in Karst: hydrogeology of fractured rocks]. Actes du colloque de Dubrovnik 1965, IAHS-UNESCO, Wallingford, UK and ParisGoogle Scholar
  69. Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible mean for characterizing carbonate aquifers. J Hydrol 14:93–128CrossRefGoogle Scholar
  70. Stevanović Z ed (2015) Karst aquifers: characterization and engineering. Professional Practice in Earth Sciences series, Springer, Heidelberg, Germany, 687 ppGoogle Scholar
  71. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370CrossRefGoogle Scholar
  72. Thrailkill J (1977) Relative solubility of limestone and dolomite. Karst Hydrol AIH Mem 12:491–500Google Scholar
  73. Werner PW, Sundquist KJ (1951) On the groundwater recession curve for large watersheds. IAHS Publ 33, IAHS, Wallingford, UK, pp 202–212Google Scholar
  74. White BW (1969) Conceptual models for carbonate aquifers. Ground Water 7(3):15–21CrossRefGoogle Scholar
  75. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2–3):85–105CrossRefGoogle Scholar
  76. White WB (2010) Spring water geochemistry. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs. Elsevier, Amsterdam, 573 ppGoogle Scholar
  77. Worthington SRH, Davis GJ, Quinlan JF (1992) Geochemistry of springs in temperate carbonate aquifers: recharge type explains most of variation. In: Chauve P, Zwahlen F (eds) Cinquiéme Coolloque d’Hydrologie en Payes Calcaire et en Milieu Fissuré. Fifth Colloquium on Hydrology in limestone and fractured environment. Université de Besançon, Besançon, France, 341–347 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geological Service of AlbaniaTiranaAlbania
  2. 2.Štátny geologický ústav Dionýza Štúra - Geological Survey of Slovak RepublicBratislava 11Slovakia

Personalised recommendations