Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 2027–2043 | Cite as

Chaos theory applied to the modelling of karst springs: first results from univariate time series

  • S. MangiarottiEmail author
  • Y. Zhang
  • M. Leblanc
Paper
  • 72 Downloads

Abstract

The hydrological dynamics of karstic systems are generally highly nonlinear and weakly predictable. This paper introduces, for the first time, a hydrological modelling approach based on chaos theory. Although this modelling approach may be extended to multi-variables, as a first step in exploring its applicability, the focus is on the simple case of single-variable modelling for karst springs, which in practice corresponds to basins where rainfall is ungauged or poorly constrained. Chaos modelling is applied to the discharge of two karstic springs, the Doubs and the Lez springs in France, selected because they represent very different geological settings, climatic conditions, anthropogenic forcings and discharge dynamics. A deterministic model of autonomous ordinary differential equations is obtained for each spring. The models have chaotic behavior in both cases. The forecasting skills of these chaotic models are assessed. Forecasting performance estimates suggest that, under real conditions, forecasting could be performed for time horizons of ~16 h for Doubs and ~19 h for Lez (±1,000 L/s, 95% of confidence). This analysis offers new evidence for chaos in hydrogeology: the dynamic of discharge of karst springs is both deterministic and highly sensitive to the initial conditions, and it can be approximated by low-dimensional models.

Keywords

Empirical modelling Time series Karst Spring discharge Nonlinear dynamical systems 

La théorie du chaos appliquée à la modélisation des sources karstiques: premiers résultats à partir de séries temporelles univariées

Résumé

Les dynamiques hydrologiques des systèmes karstiques sont généralement fortement non linéaires et faiblement prévisibles. Cet article présente, pour la première fois, une approche de modélisation hydrologique basée sur la théorie du chaos. Bien que cette approche de modélisation puisse être étendue à des variables multiples, la présente étude, destinée en première phase à explorer l’applicabilité de l’approche, se concentre sur la modélisation d’une unique variable de débit, qui correspond en pratique à des bassins insuffisamment jaugés ou entièrement non jaugés. La modélisation chaotique est appliquée au débit de deux sources karstiques, les sources du Doubs et du Lez en France, choisies en raison de configurations géologiques, de conditions climatiques, d’influences anthropogéniques et de dynamiques de débit, très différents. Un modèle déterministe aux équations aux dérivées ordinaires autonomes est obtenu pour chaque source. Les modèles présentent un comportement chaotique dans chacun des deux cas. Les performances prédictives des deux modèles sont évaluées. Les performances prévisionnelles suggèrent qu’en condition réelles des prévisions pourraient être effectuées à des horizons temporels de ~16 heures pour le Doubs et ~19 heures pour le Lez (±1,000 L/s, 95% de confidence). Cette analyse présente une preuve nouvelle de chaos en hydrogéologie : la dynamique du débit des sources karstiques est à la fois déterministes et hautement sensible aux conditions initiales, et elle peut être approchée par des modèles de petites dimension.

La teoría del caos aplicada a la modelización de surgencias kársticas: primeros resultados basados en series temporales univariantes

Resumen

La dinámica hidrológica de los sistemas kársticos es, por lo general, marcadamente no lineal y débilmente predecible. Este artículo introduce, por primera vez, un método de modelización hidrológica basado en la teoría del caos. Aunque este método de modelización podría extenderse a múltiples variables, como primer paso en la exploración de su aplicabilidad, se centra en el caso más simple de modelización univariante de surgencias kársticas, que en la práctica corresponde a cuencas no aforadas o poco restringidas. La modelización del caos se aplica a la descarga de dos surgencias, la del Doubs y la del Lez en Francia, elegidas porque representan marcos geológicos, condiciones climáticas, forzamientos antropogénicos y dinámicas de descarga muy diferentes. Para cada surgencia, se ha obtenido un modelo determinístico de ecuaciones diferenciales ordinarias autónomas. Los modelos tienen comportamiento caótico en los dos casos. Se ha evaluado la capacidad de predicción de estos modelos caóticos. Las estimaciones indican que, en condiciones reales, se pueden realizar previsiones para horizontes de tiempo de ~16 horas para Doubs y ~19 horas para Lez (±1,000 L/s, 95% de confianza). De este análisis se desprenden nuevas evidencias para el caos en hidrogeología: la dinámica de descarga en fuentes kársticas es simultáneamente determinística y muy sensible a las condiciones iniciales, y puede aproximarse mediante modelos de baja dimensionalidad.

混沌理论在岩溶泉模拟中的应用:从单变量时间序列得到的首次结果

摘要

岩溶系统的水文动态一般具有很高的非线性,很弱的预测性。本论文第一次介绍了一个基于混沌理论的水文模拟方法。尽管这个模拟方法可能扩展到多变量,但为了探索其初步的应用性,我们把焦点放在岩溶泉的单变量模拟状况,在实际中这种模拟状况与无法测量或难于追踪降雨量的流域相关联。混沌模拟被应用于两个岩溶泉的流量: 法国的杜河泉 (Doubs spring) 和雷河泉 (Lez spring),选择这两个泉是基于它们代表非常不同的地质环境,气候条件,人类活动影响和流量动态。对于每一个泉我们都获得了具有自治常微分方程的确定性模型。各个泉的模型都有混沌行为。我们对这些混沌模型的预测能力进行了评价。对预测性能的估算显示,在实际情况下,预测可实施的时间范围是:对杜河 (Doubs) 为16小时,对雷河 (Lez) 为19小时 (±1,000 升/秒,置信区间为95%)。 该分析为水文地质学的混沌提供了新的证据:岩溶泉的流量动态对初始条件既有确定性又有高敏感性,而且它可以通过低维模型来近似。

Teoria do caos aplicada à modelagem de nascentes cársticas: primeiros resultados de séries temporais univariadas

Resumo

As dinâmicas hidrológicas de sistemas cársticos são altamente não-lineares e pouco previsíveis. Este artigo introduz, pela primeira vez, uma abordagem de modelagem hidrológica baseada na teoria do caos. Embora esta abordagem de modelagem possa ser estendida a multivariáveis, como um primeiro passo para explorar sua aplicabilidade, o foco é no simples caso de modelagem de variável única para nascentes cársticas que, na prática, corresponde a bacias onde a precipitação é insuficiente ou pouco restrita. A modelagem de caos é aplicada à descarga de duas nascentes cársticas, as nascentes Doubs e Lez, na França, selecionadas porque representam ambientes geológicos, condições climáticas, alterações antropogênicas e dinâmicas de descarga muito diferentes. Um modelo determinístico de equações diferenciais ordinárias autônomas é obtido para cada nascente. Os modelos possuem comportamento caótico em ambos os casos. As habilidades de previsão desses modelos caóticos são avaliadas. Estimativas de desempenho de previsão sugerem que, sob condições reais, a previsão pode ser realizada para horizontes de tempo de ~16 horas para Doubs e ~19 horas para Lez (±1,000 L/s, 95% de confiança). Esta análise oferece novas evidências para o caos na hidrogeologia: a dinâmica de descarga de nascentes cársticas é tanto determinante quanto altamente sensível às condições iniciais, e pode ser aproximada por modelos de baixa dimensão.

Notes

Acknowledgements

The authors thank the associate editor Michael Sukop and four anonymous reviewers for their constructive comments which enabled significant improvements to the manuscript. Data sources: Banque HYDRO - MEEDDAT/DGPR/SRNH.

Funding information

This work was supported by the Défi InFiNiTi program of the CNRS (Musc and SlowFast project), and the earlier developments of the algorithms (GPoM) used to model chaos were supported by the Les Enveloppes Fluides et l’Environnement (LEFE) program of INSU (MoMu project of MANU section).

Supplementary material

10040_2019_1971_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1078 kb)
10040_2019_1971_MOESM2_ESM.pdf (1 mb)
ESM 2 (PDF 1000 kb)
10040_2019_1971_MOESM3_ESM.pdf (441 kb)
ESM 3 (PDF 441 kb)

References

  1. Aguirre LA, Letellier C (2009) Modeling Nonlinear Dynamics and Chaos: A Review. Math Probl Eng 2009:1–35. https://doi.org/10.1155/2009/238960Google Scholar
  2. Aguirre LA, Letellier C (2011) Investigating observability properties from data in nonlinear dynamics. Phys Rev E 83:066209Google Scholar
  3. Avias JV (1995) Gestion active de l’exsurgence karstique de la source du Lez (Hérault, France) 1957–1994 [Active management of the Lez karst spring, Hérault, France, 1957–1994]. Hydrogéologie 1:113–127Google Scholar
  4. Bailly-Comte V, Borrell-Estupina V, Jourde H, Pistre S (2012) A conceptual semidistributed model of the Coulazou River as a tool for assessing surface water–karst groundwater interactions during flood in Mediterranean ephemeral rivers. Water Resour Res 48:W09534Google Scholar
  5. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160Google Scholar
  6. Hydro Banque (2017) Les principaux services proposes [Principal services offered]. http://www.hydro.eaufrance.fr. Accessed 4 July 2017
  7. Bergé P, Pomeau Y, Vidal C (1984) Order within chaos: toward a deterministic approach to turbulence. Wiley, New York, 344 ppGoogle Scholar
  8. Bergström S, Forman A (1973) Development of a conceptual deterministic rainfall-runoff model. Nord Hydrol 4:147–170Google Scholar
  9. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69Google Scholar
  10. Bichot F, Karnay G, Lavie J (2003) Les sources de La Touvre: synthèse des connaissances [The sources of La Touvre: synthesis of knowledge]. BRGM report RP-52738-FR, BRGM, Orléans, France, 54 ppGoogle Scholar
  11. Bonnet M, Forkasiewicz J, Margat J, Thiery D (1977) Introduction à la simulation des systèmes aquifères karstiques: essais d’application à la Fontaine de Vaucluse [Introduction to the simulation of karstic aquifers: application test to Fontaine de Vaucluse]. BRGM report 77 SGN 661 HYD, Orléans, FranceGoogle Scholar
  12. Brouyère S, Carabin G, Dassargues A (2003) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol J 12(2):123–134Google Scholar
  13. Carroll TL (1995) A simple circuit for demonstrating regular and synchronized chaos. Am J Phys 63:377Google Scholar
  14. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO–3) to understand the role of the unsaturated zone: a case study—karst aquifers in the Doubs Valley, eastern France. Geophys Res Lett 30(6):1322Google Scholar
  15. Chauve P (2006) Jura. In Aquifères et eaux souterraines de France, tome 2 [Aquifers and ground waters of France, vol 2]. BRGM, Orléans, France, pp 562–590Google Scholar
  16. Chauve P, Jacquemin P, Mania J (1986) Représentation des écoulements en milieu karstique de zone plissée; exemple des Hauts Bassins du Doubs et de la Loue [Representation of the flows in a karstic medium of folded zone: example of the upper basins of Doubs and Loue]. Bull Soc Géol Fr 2(4):645–652Google Scholar
  17. Crutchfield JP, McNamara BS (1987) Equations of motion from a data series. Complex Syst 1:417–452Google Scholar
  18. Dhanya CT, Kumar DN (2010) Nonlinear ensemble prediction of chaotic daily rainfall. Adv Water Resour 33:327–347Google Scholar
  19. Dhanya CT, Kumar DN (2011) Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour Res 47:W06507Google Scholar
  20. Dreiss SJ (1989) Regional-scale transport in a karst aquifer, part 2: linear systems and time moment analysis. Water Resour Res 25(1):126–134Google Scholar
  21. Edijatno MC (1989) Un modèle pluie-débit journalier à trois paramètres [A three-parameter daily rainfall-runoff model]. La Houille Blanche 2:113–121Google Scholar
  22. Eisenlohr L, Bouzelboudjen M, Király L, Rossier Y (1997) Numerical versus statistical modelling of natural response of a karst hydrogeological system. J Hydrol 202(1–4):244–262Google Scholar
  23. Faybishenko B (2002) Chaotic dynamics in flow through unsaturated fractured media. Adv Water Resour 25:793–816Google Scholar
  24. Fleury P, Ladouche B, Conroux Y, Jourde H, Dörfliger N (2009) Modelling the hydrologic functions of a karst aquifer under active water management: the Lez spring. J Hydrol 365(3):235–243Google Scholar
  25. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  26. Freitas U, Letellier C, Aguirre L (2009) Failure in distinguishing colored noise from chaos using the “noise titration” technique. Phys Rev E 79:035201Google Scholar
  27. Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water. 45(1):36–45Google Scholar
  28. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. Hydrogeol J 20(8):1441–1461Google Scholar
  29. Ghosh D, Khajanchi S, Mangiarotti S, Denis F, Dana SK, Letellier C (2017) How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment? Biosystems 158:17–30Google Scholar
  30. Gilmore R, Lefranc M (2002) The topology of chaos. Wiley, Chichester, UKGoogle Scholar
  31. Gouesbet G, Letellier C (1994) Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets. Phys Rev E 49(6):4955–4972Google Scholar
  32. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349Google Scholar
  33. Guilbot A (1975) Modélisation des écoulements d’un aquifère karstique (liaison pluie-débit): application aux bassins de Saugras et du Lez [Modelling of flows in a karst aquifer (rainfall-runoff relation): application to the Saufras and Lez basins]. PhD Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France, 117 ppGoogle Scholar
  34. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242Google Scholar
  35. Hense A (1987) On the possible existence of a strange attractor for the southern oscillation. Beiträge Physik Atmosphäre 60(1):34–47Google Scholar
  36. Janža M (2010) Hydrological modeling in the karst area, Rižana spring catchment, Slovenia. Environ Earth Sci 61:909–920Google Scholar
  37. Jeanblanc A, Schneider G (1981) Etude géologique et hydrogéologique du Risoux – Mont-d’Or [Geologic and hydrogeologic study of the Risoux – Mont-d’Or]. PhD Thesis, Université de Franche Comté, FranceGoogle Scholar
  38. Jourde H, Dorfliger N, Maréchal JC, Batiot-Guilhe C, Bouvier C, Courrioux G, Desprats JF, Fullgraft T, Ladouche B, Leonardi V, Malateree PO, Prié V, Seidel JL (2011) Projet de gestion multi-usages de l’hydrosystème karstique du Lez: synthèse de connaissances récentes et passées [Project of multiple-use management of the karst hydrosystem of Lez: synthesis of recent and past knowledge]. BRGM report RP-60041-FR, BRGM, Orléans, France. 355 ppGoogle Scholar
  39. Jourde H, Lafare A, Mazzilli N, Belaud G, Neppel L, Dörfliger N, Cernesson F (2014) Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment. Environ Earth Sci 71(2):573Google Scholar
  40. Jukić D, Denić-Jukić V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374Google Scholar
  41. Kaplan DT, Glass L (1992) Direct test for determinism in a time series. Phys Rev Lett 68(4):427–430Google Scholar
  42. Kaplan JL, Yorke JA (1979) Chaotic behavior of multidimensional difference equations. In: Peitgen HO, Walter HO (eds) Functional differential equations and approximations of fixed points. Lecture Notes in Mathematics 730, Springer, Berlin, 204 ppGoogle Scholar
  43. Karam Y (1989) Essais de modélisation des écoulements dans un aquifère karstique: exemple de la source du Lez (Hérault, France) [Modelling tests of the flows in a karstic aquifer: exemples of the Lez spring, Hérault, France]. PhD Thesis, Université Montpellier II, France, 286 ppGoogle Scholar
  44. Khan S, Ganguly AR, Saigal S (2005) Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Process Geophys 12:41–53Google Scholar
  45. Kiraly L, Morel G (1976) Etude de régularisation de l’Areuse par modèle mathématique [Study of flow regulation of the Areuse by mathematical modelling]. Bull Centre Hydrogéol 1:19–36Google Scholar
  46. Király L (2003) Karstification and groundwater flow. Speleogenesis and Evolution of Karst Aquifers. 1:1–26Google Scholar
  47. Kordilla J, Sauter M, Reimann T, Geyer T (2012) Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach. Hydrol Earth Syst Sci 16(10):3909–3923Google Scholar
  48. Kovacs A, Sauter M (2007) Modelling karst hydrodynamics. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, Balkema, The Netherlands, pp 65–91Google Scholar
  49. Kurtulus B, Razack M (2007) Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeol J 15(2):241–254Google Scholar
  50. Kurtulus B, Razack M (2010) Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. J Hydrol 381(1):101–111Google Scholar
  51. Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs, part I: convolution and spectral analyses. J Hydrol 238:123–148Google Scholar
  52. Lainscsek C, Letellier C, Schürrer F (2001) Ansatz library for global modeling with a structure selection. Phys Rev E 64:016206Google Scholar
  53. Lainscsek C, Letellier C, Gorodnitsky I (2003) Global modeling of the Rössler system from the z-variable. Phys Lett A 314(5–6):409–427Google Scholar
  54. Lambrakis N, Andreou AS, Polydoropoulos P, Georgopoulos E, Bountis T (2000) Nonlinear analysis and forecasting of a brackish karstic spring. Water Resour Res 36(4):875–884Google Scholar
  55. Larocque M, Banton O, Razack M (2000) Transient-state history matching of a karst aquifer ground water flow model. Groundwater 38(6):939–946Google Scholar
  56. Letellier C (2013) Chaos in nature. World Sci Ser Nonlin Sci Ser A, vol 81Google Scholar
  57. Letellier C, Aguirre LA (2005) Graphical interpretation of observability in terms of feedback circuits. Phys Rev E 72:056202Google Scholar
  58. Letellier C, Le Sceller L, Maréchal E, Dutertre P, Maheu B, Gouesbet G, Fei Z, Hudson JL (1995) Global vector field reconstruction from a chaotic experimental signal in copper electrodissolution. Phys Rev E 51(5):4262–4266Google Scholar
  59. Letellier C, Aguirre LA, Freitas US (2009) Frequently asked questions about global modeling. Chaos 19:023103Google Scholar
  60. Letellier C, Mangiarotti S, Sendiña-Nadal I, Rössler OE (2018) Topological characterization versus synchronization for assessing (or not) dynamical equivalence. Chaos 28:045107Google Scholar
  61. Loaiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol. 227(1–4):173–194Google Scholar
  62. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20(2):130–141Google Scholar
  63. Lorenz EN (1984) Irregularity: a fundamental property of the atmosphere. Tellus 36A:98–110Google Scholar
  64. Lozi R (2007) Giga-periodic orbits for weakly coupled tent and logistic discretized maps. In: Siddiqi AH, Duff IS, Christensen O (eds) Modern mathematical models: methods and algorithms for real world systems. Proc. Conf. Intern. on Industrial and Appl. Math., New Delhi, 4–6 Dec. 2004 Anamaya, New DelhiGoogle Scholar
  65. Maillet ET (1905) Essais d’hydraulique souterraine & fluviale [Outline of underground and river hydraulics]. Hermann, ParisGoogle Scholar
  66. Mangiarotti S (2014) Modélisation globale et caractérisation topologique de dynamiques environnementales: de l’analyse des enveloppes fluides et du couvert de surface de la terre à la caractérisation topolodynamique du chaos [Global modelling and topological characterisation of environmental dynamics: from the analysis of fluid envelopes and earth land surface to the topolodynamical characterisation of chaos]. Habilit Direct Res, Univ Toulouse 3, FranceGoogle Scholar
  67. Mangiarotti S (2015) Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911). Chaos Solitons Fractals 81:184–196Google Scholar
  68. Mangiarotti S (2018) The global modelling classification technique applied to the detection of chaotic attractors. Supplementary material A to “Can the global modelling technique be used for crop classification?”. Chaos Solitons Fractals 106:363–378Google Scholar
  69. Mangiarotti S, Huc M (2019) Can the original equations of a dynamical behaviour be retrieved from observational time series? Chaos 29:023133Google Scholar
  70. Mangiarotti S, Sekhar M, Berthon L, Javeed Y, Mazzega P (2012a) Causality analysis of groundwater dynamics based on a vector autoregressive model in the semi-arid basin of Gundal (South India). J Appl Geophys 83:1–10Google Scholar
  71. Mangiarotti S, Mazzega P, Mougin E, Hiernaux P (2012b) Predictability of vegetation cycles over the semi-arid region of Gourma (Mali) from forecasts of AVHRR-NDVI signals. Remote Sens Environ 123:246–257Google Scholar
  72. Mangiarotti S, Coudret R, Drapreau L, Jarlan L (2012c) Polynomial model search and global modelling: two new algorithms for global modelling of chaos. Phys Rev E 86(4):046205Google Scholar
  73. Mangiarotti S, Drapeau L, Letellier C (2014) Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco. Chaos 24(2):023130Google Scholar
  74. Mangiarotti S, Peyre M, Huc M (2016a) A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). Chaos 26(11):113112Google Scholar
  75. Mangiarotti S, Le Jean F, Huc M, Letellier C (2016b) Global modeling of aggregated and associated chaotic dynamics. Chaos Solitons Fractals 83:82–96Google Scholar
  76. Mangiarotti S, Le Jean F, Chassan M, Drapeau L, Huc M (2018a) Generalized polynomial modelling, version 1.1. Comprehensive R Archive Network. https://CRAN.R-project.org/package=GPoM. Accessed 10 January 2018
  77. Mangiarotti S, Sharma AK, Corgne S, Hubert-Moy L, Ruiz L, Sekhar M, Kerr Y (2018b) Can the global modelling technique be used for crop classification? Chaos Solitons Fractals 106:363–378Google Scholar
  78. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale [For a better knowledge of the hydrologic systems from correlative and spectral analyses]. J Hydrol 67(1–4):25–43Google Scholar
  79. Maquet J, Letellier C, Aguirre LA (2007) Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems. J Math Biol 55(1):21–39Google Scholar
  80. Maréchal JC, Ladouche B, Batiot-Guilhe C, Borrell-Estupina V, Caballero Y, Cernesson F, Dörfliger N, Fleury P, Jay-Allemand M, Jourde H, Leonardi V, Malaterre PO, Seidel JL, Vion PY (2014) Projet gestion multi-usages de l’hydrosystème karstique du Lez: synthèse des résultats et recommandations [Project multiple-use management of the karst hydrosystem of Lez: synthesis of the results and recommendations). BRGM report RP-61051-FR, BRGM, Orléans, France, 126 ppGoogle Scholar
  81. Mariethoz G, Baker A, Sivakumar B, Hartland A, Graham P (2012) Chaos and irregularity in karst percolation. Geophys Res Lett 39:L23305Google Scholar
  82. Ménard O, Letellier C, Maquet J, Le Sceller L, Gouesbet G (2000) Analysis of a non synchronized sinusoidally driven dynamical system. Int J Bifurc Chaos 10(7):1759–1772Google Scholar
  83. Nicod J (2012) Sources et sites des eaux karstiques [Springs and sites of karst water]. Méditerranée Hors-Série, Presses Universitaires de Provence, Aix-en-Provence, France, 277 ppGoogle Scholar
  84. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168(1–4):73–89Google Scholar
  85. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279(1–4):275–289Google Scholar
  86. Poincaré H (1899) Les méthodes nouvelles de la mécanique céleste, Tome III [The new methods of celestial mechanics, vol III]. Gauthier-Vilard, ParisGoogle Scholar
  87. Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33(6):1353–1367Google Scholar
  88. Rodríguez L, Vives L, Gomez A (2013) Conceptual and numerical modeling approach of the Guarani aquifer system. Hydrol Earth Syst Sci 17(1):295–314Google Scholar
  89. Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP (1989) Chaos in rainfall. Water Resour Res 25:1667–1675Google Scholar
  90. Rössler OE (1976) An equation for continuous chaos. Phys Lett 57A(5):397–398Google Scholar
  91. Ruelle D (1976) The Lorenz attractor and the problem of turbulence. Lect Notes Math 565:146–158Google Scholar
  92. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639Google Scholar
  93. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, U.S.A. J Hydrol 276(1–4):137–158Google Scholar
  94. Siou KA, Johannet A, Borrell Estupina V, Pistre S (2012) Optimization of the generalization capability for rainfall–runoff modeling by neural networks: the case of the Lez aquifer (southern France). Environ Earth Sci 65(8):2365–2375Google Scholar
  95. Sivakumar B, Berndtsson R, Olsson J, Jinno K, Kawamura A (2000) Dynamics of monthly rainfall-runoff process at the Gota basin: a search for chaos. Hydrol Earth Syst Sci 4:407–417Google Scholar
  96. Takens F (1981) Detecting strange attractor in turbulence. In: Rand D, Young LS (ed) Lecture notes in mathematics, 898. Springer, Berlin, pp 366–381Google Scholar
  97. Teutsch G, Sauter M (1998) Distributed parameter modelling approaches in karst hydrological investigations. Bull d’Hydrogéol 16:99–109Google Scholar
  98. Thiéry D, Bérard P (1984) Alimentation en eau de la ville de Montpellier: Captage de la source du Lez—études des relations entre la source et son réservoir aquifère [Water supply of the City of Montpellier: water extraction from the Lez spring—study of the relations between the spring and its aquifer reservoir]. Report no. 3, Report 84 AGI 171 LRO/EAU, BRGM, Orléans, France, 70 ppGoogle Scholar
  99. Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model. J Hydrol 397:250–262Google Scholar
  100. Tufillaro NB, Abbott T, Reilly J (1992) An experimental approach to nonlinear dynamics and chaos, Addison-Wesley, BostonGoogle Scholar
  101. Whitney H (1936) Differentiable manifolds: the annals of mathematics. Sec Ser 37(3):645–680Google Scholar
  102. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317Google Scholar
  103. Zheng F, Wan Y, Song K, Sun D, Hedgepeth M (2016) Reconstructing input for artificial neural networks based on embedding theory and mutual information to simulate soil pore water salinity in tidal floodplain. Water Resour Res 52(1):511–532Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre d’Études Spatiales de la Biosphère, UPS-CNRS-CNES-IRD-INRAObservatoire Midi-PyrénéesToulouseFrance
  2. 2.Hydrogeology Laboratory, UMR EMMAHUniversité Avignon-INRAAvignonFrance

Personalised recommendations