Advertisement

A framework and simple decision support tool for groundwater contamination assessment in an urban redevelopment precinct

  • Emily HepburnEmail author
  • Anne Northway
  • Dawit Bekele
  • Matthew Currell
Paper
  • 36 Downloads

Abstract

Overcoming barriers to large-scale urban redevelopment on brownfield land is an essential step in the global drive toward achieving the UN’s sustainable development goals. Arguably the most significant barrier is site contamination. Decision support tools (DSTs) are potentially effective ways to assess contaminated sites and evaluate different remediation/management strategies as appropriate to local conditions. Whilst there has been extensive development of DSTs for single contaminated sites, only a limited number are available for assessing contamination at the ‘precinct’ (district) scale. This paper presents a framework and simple DST for the assessment of contaminated groundwater, using Australia’s largest urban redevelopment project, Fishermans Bend in Melbourne, as a case study. The value of the inclusion of precinct-wide data into individual site-scale investigations is demonstrated via the DST. Common contaminant sources identified across Fishermans Bend include fill contaminated with heavy metals, legacy landfill leachate containing heavy metals and per- and poly-fluoroalkyl substances (PFAS), and naturally occurring ammonia and methane in organic-rich sediments. By comparison, point sources of heavy metals and PFAS appear related to industrial sources. By using the DST, environmental practitioners and auditors can more effectively separate background conditions from point sources, characterise the ambient conditions of the aquifer and their relationships to natural and anthropogenic processes, and use contaminant data to inform remedial options assessment. Where these increasingly complex and varied environmental datasets can be collected, stored and managed within one central database, cross- or inter-disciplinary collaborations may drive improvements in solving environmental problems which typically arise during the redevelopment process.

Keywords

Decision support tool Groundwater management Contamination Urban redevelopment Australia 

Un cadre et un outil simple d’aide à la décision en vue de l’évaluation de la contamination des eaux souterraines dans une zone de redéveloppement urbain

Résumé

Surmonter les obstacles à un re-développement urbain à grande échelle dans les zones de friches industrielles est une étape essentielle de la démarche menée à l’échelle mondiale qui vise à atteindre les objectifs de développement durable de l’ONU. On peut soutenir que l’obstacle le plus considérable est la contamination de site. Les outils d’aide à la décision (OAD) sont des moyens potentiellement efficaces pour évaluer les sites contaminés et estimer les différentes stratégies de remédiation et de gestion appropriées aux conditions locales. Alors qu’il y a eu un développement important des OAD pour les sites contaminés isolés, un nombre limité d’OAD seulement est disponible pour évaluer la contamination à l’échelle d’un district. Le présent article décrit un cadre et un OAD simple qui visent l’évaluation de la contamination des eaux souterraines en utilisant le plus grand projet de redéveloppement urbain d’Australie, le Fishermans Bend de Melbourne, comme étude de cas. L’intérêt de l’intégration des données acquises à l’échelle du district dans des investigations menées à l’échelle d’un site unique est démontré grâce à l’OAD. Parmi les sources de contaminants fréquemment identifées dans Fishermans Bend figurent les remblais contaminés par des métaux lourds, les lixiviats de décharges historiques contenant des métaux lourds et des substances per-et-poly fluoroalkylées (SPFA), ainsi que l’ammoniac et le méthane d’origine naturelle des sédiments riches en matières organiques. Par comparaison, les points sources de métaux lourds et de SPFA apparaissent comme en relation avec des origines industrielles. En utilisant les OAD, les praticiens et les auditeurs environnementaux peuvent distinguer plus efficacement l’état général et les sources ponctuelles, caractériser les conditions du milieu aquifère et leurs relations avec les processus naturels et anthropiques et utiliser les données sur les contaminants pour éclairer l’évaluation des options de remédiation. Là où ces ensembles de données environnementales de plus en plus complexes et variées peuvent être collectés, stockés et gérés dans une base de données centrale, des collaborations croisées ou inter-disciplinaires peuvent conduire à des améliorations dans la résolution des problèmes environnementaux qui surgissent typiquement pendant le processus de redéveloppement urbain.

Una estrategia y una herramienta sencilla de apoyo a la toma de decisiones para la evaluación de la contaminación de las aguas subterráneas en un recinto de reurbanización urbana

Resumen

Superar las barreras a la reurbanización urbana a gran escala en terrenos de antiguas zonas industriales es un paso esencial en el impulso mundial hacia el logro de los objetivos de desarrollo sostenible de las Naciones Unidas. Podría decirse que la barrera más importante es la contaminación del sitio. Las herramientas de apoyo a la toma de decisiones (DSTs) son formas potencialmente efectivas de evaluar sitios contaminados y evaluar diferentes estrategias de remediación/gestión según las condiciones locales. Aunque ha habido un amplio desarrollo de DST para sitios contaminados individuales, sólo se dispone de un número limitado de ellos para evaluar la contaminación a escala de “recinto” (distrito). Este documento presenta un marco y un DST simple para la evaluación de aguas subterráneas contaminadas, utilizando como caso de estudio el proyecto de reurbanización urbana más grande de Australia, Fishermans Bend en Melbourne. El valor de la inclusión de los datos de todo el recinto en las investigaciones individuales a escala de sitio se demuestra a través de la DST. Las fuentes de contaminantes comunes identificadas en Fishermans Bend incluyen el relleno contaminado con metales pesados, lixiviados de vertederos antiguos que contienen metales pesados y sustancias perfluoroalquilas y polifluoradas (PFAS), así como amoníaco y metano presentes de forma natural en sedimentos ricos en orgánicos. En comparación, las fuentes puntuales de metales pesados y PFAS parecen estar relacionadas con fuentes industriales. Mediante el uso de la DST, los profesionales del medio ambiente y los auditores pueden separar más eficazmente las condiciones de fondo de las fuentes puntuales, caracterizar las condiciones ambientales del acuífero y sus relaciones con los procesos naturales y antropogénicos, y utilizar los datos de contaminantes para informar la evaluación de las opciones de remediación. Cuando estos conjuntos de datos ambientales cada vez más complejos y variados pueden recopilarse, almacenarse y gestionarse dentro de una base de datos central, las colaboraciones transdisciplinarias o interdisciplinarias pueden impulsar mejoras en la resolución de los problemas ambientales que suelen surgir durante el proceso de reurbanización.

用于城市重建区地下水污染评估的框架和简单决策支持工具

摘要

解决棕地大规模城市重建的障碍是实现联合国可持续发展目标的全球驱动力中的重要议题。可以说最重要的障碍是场地污染问题。决策支持工具(DST)是评估污染场地和评估适合当地条件的不同修复管理措施的可能的有效方法。虽然单个污染场地的DST已经有了广泛的发展,但只有少数DST可用于评估“区域”规模的污染问题。本文以澳大利亚最大的城市重建项目(墨尔本的Fishermans Bend)作为案例研究,提出了评估受污染地下水的框架和简单DST。通过DST展示了将区域范围数据纳入单个场地规模调查的价值。在Fishermans Bend中发现的常见污染源包括被重金属污染的填充物、含有重金属的传统垃圾渗滤液、全氟和多氟烷基物质(PFAS),以及富含有机物的沉积物中天然存在的氨和甲烷。相比之下,重金属和PFAS的点源似乎与工业来源有关。通过使用DST,环境领域从业者和审核员可以更有效地将背景条件与点源分开,从而表征含水层的环境条件及其与自然和人为过程的关系,并使用污染物数据为修复方案评估提供信息。这些日益复杂和多样化的环境数据集可以收集、存储和管理在中央数据库中,跨学科或学科内的合作可以推动解决在重建过程中出现的典型环境问题。

Uma ferramenta simples e estruturada de suporte a decisão para avaliação de contaminação das águas subterrâneas em um recinto de redesenvolvimento urbano

Resumo

A superação de barreiras para o redesenvolvimento em larga escala em terrenos abandonados é um passo essencial no esforço global para alcançar as metas de desenvolvimento sustentável da ONU. Indiscutivelmente, a barreira mais significante é a contaminação local. As ferramentas de apoio a decisão (FAD) são formas potencialmente efetivas de analisar locais contaminados e avaliar diferentes estratégias de remediação/manejo apropriadas as condições locais. Embora tenha havido um desenvolvimento extensivo de FAD para locais contaminados isolados, somente um número limitado está disponível para avaliar a contaminação na escala de ‘recintos’ (distritos). Esse trabalho apresenta uma simples e estruturada FAD para a avaliação das águas subterrâneas contaminadas, usando o maior projeto de redesenvolvimento da Austrália, o Fishermans Bend em Melbourne, como um estudo de caso. O valor da inclusão de dados na extensão de distrito em investigações individuais a escala local é demonstrado via FAD. As fontes comuns de contaminação identificadas na Fishermans Bend incluem preenchimentos contaminados com metal pesado, resíduo lixiviado de aterro sanitário contendo metais pesados e substâncias per- e polifluoralquílicas (SPFA), e amônia natural e metano em sedimentos ricos em matéria orgânica. Por comparação, fontes pontuais de metais pesados e SPFA aparecem relacionadas a fontes industriais. Ao usar a FAD, os profissionais do meio ambiente e auditores podem separar mais efetivamente as condições segundo plano de fontes pontuais, caracterizar as condições ambientais do aquífero e suas relações com os processos naturais e antrópicos, e usar dados de contaminantes para informar a avaliação das opções de remediação. Onde esses conjuntos de dados cada vez mais complexos e variados podem ser coletados, e armazenados dentro de um banco de dados, as colaborações interdisciplinares podem promover melhorias na solução de problemas ambientais que normalmente surgem durante o processo de redesenvolvimento.

Notes

Acknowledgements

Access to sampling sites was facilitated by the Environment Protection Authority, Victoria (EPA Victoria), who also provided valuable advice throughout the study. It must be noted that whilst the EPA Victoria supports this research, they do not endorse nor require this decision support tool.

Funding information

This work was supported by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), whose activities are funded by the Australian Government’s Cooperative Research Centres Programme.

Supplementary material

10040_2019_1970_MOESM1_ESM.pdf (278 kb)
ESM 1 (PDF 277 kb)

References

  1. AECOM (2015) Desktop study and preliminary regional conceptual site model, Fishermans Bend urban renewal area, Report for EPA Victoria. http://www.epa.vic.gov.au/our-work/programs/~/media/Files/Our%20work/Programs%20and%20initiatives/Fishermans%20Bend/FINAL-FBURA-Desktop-Study_Aug-2015.pdf. Accessed 12 January 2018
  2. AECOM (2016) Baseline groundwater quality assessment, Fishermans Bend urban renewal area. Report for EPA Victoria. http://www.epa.vic.gov.au/our-work/programs/~/media/Files/Our%20work/Programs%20and%20initiatives/Fishermans%20Bend/FINAL-FBURA-Baseline-Report_March-2016.pdf. Accessed 12 January 2018
  3. Agostini P, Critto A, Semenzin E, Marcomini A (2009) Decision support systems for contaminated land management: a review. In: Marcomini A, Suter IIGW, Critto A (eds) Decision support systems for risk-based management of contaminated sites. Springer, New York, pp 137–156Google Scholar
  4. Agostini P, Pizzol L, Critto A, D’Alessandro M, Zabeo A, Marcomini A (2012) Regional risk assessment for contaminated sites, part 3: spatial decision support system. Environ Int 48:121–132CrossRefGoogle Scholar
  5. Alberini A, Longo A, Tonin S, Trombetta F, Turvani M (2005) The role of liability, regulation and economic incentives in brownfield remediation and re-development: evidence from surveys of developers. Reg Sci Urban Econ 35:327–351CrossRefGoogle Scholar
  6. Alexandrescu F, Klusáček P, Bartke S, Osman R, Frantál B, Martinát S, Kunc J, Pizzol L, Zabeo A, Giubilato E, Critto A, Bleicher A (2017) Actor networks and the construction of applicable knowledge: the case of the Timbre brownfield prioritization tool. Clean Technol Environ 19:1323–1334CrossRefGoogle Scholar
  7. Aller L, Bennet T, Lehr JH, Petter RJ (1987) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrologic settings. USEPA report, 600/2–87/035. Robert S. Kerr Environmental Research Laboratory, Ada, OKGoogle Scholar
  8. Alloway BJ (2013) Heavy metals and metalloids as micronutrients for plants and animal. In: Alloway BJ (ed) Heavy metals in soils, trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, The Netherlands, pp 195–209Google Scholar
  9. Atkinson G, Doick KJ, Burningham K, France C (2014) Brownfield regeneration to greenspace: delivery of project objectives for social and environmental gain. Urban For Urban Greening 13:586–594CrossRefGoogle Scholar
  10. Bartke S (2013) Editorial: improving brownfield regeneration—a sustainable land take solution. Thematic issue 39. In: science for environment policy: brownfield regeneration. European Commission’s DG Environment, Bristol, UK, pp 3–4Google Scholar
  11. Bartke S, Martinát S, Klusáček P, Pizzol L, Alexandrescu F, Frantál B, Critto A, Zabeo A (2016) Targeted selection of brownfields from portfolios for sustainable regeneration: user experiences from five cases testing the Timbre brownfield prioritization tool. J Environ Manag 184:94–107CrossRefGoogle Scholar
  12. Bolton M, Dridan J, Innes L, Northway A, Shiels S, Warwick B, Naidu R, Kennedy B, Srivastava P (2013) Precinct-scale urban renewal: challenges and opportunities. Remed Australasia 14:18–21Google Scholar
  13. Burke H, Hough E, Morgan DJR, Hughes L, Lawrence DJ (2015) Approaches to inform re-development of brownfield sites: an example from the Leeds area of the West Yorkshire coalfield, UK. Land Use Policy 47:321–331CrossRefGoogle Scholar
  14. Carlon C, Critto A, Ramieri E, Marcomini A (2007) DESYRE: decision support system for the rehabilitation of contaminated megasites. Integr Environ Assess Manag 3(2):211–222CrossRefGoogle Scholar
  15. Chen K, Jiao JJ (2008) Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: a case study in Shenzhen, China. Environ Pollut 151:576–584CrossRefGoogle Scholar
  16. Chen I, Ma H (2013) Using risk maps to link land value damage and risk as basis of flexible risk management for brownfield re-development. Chemosphere 90:2101–2108CrossRefGoogle Scholar
  17. CRC CARE (Cooperative Research Centre for Contamination Assessment and Remediation of the Environment) (2016) rankCARE™ 1.0. Prioritise contaminated sites for improved decision-making: user manual. https://www.crccare.com/files/dmfile/rankCAREUserManual.pdf. Accessed 4 July 2018
  18. CRC CARE (Cooperative Research Centre for Contamination Assessment and Remediation of the Environment) (2017) Guideline for performing cost benefit and sustainability analysis of remedial alternatives. Instructions for the excel-based tool (version 2.0). https://www.crccare.com/files/dmfile/CBSAToolInstructions_Rev2.pdf. Accessed 27 April 2018
  19. CRC CARE (Cooperative Research Centre for Contamination Assessment and Remediation of the Environment) (2018) National remediation framework: a national framework for remediation and management of contaminated sites in Australia. https://www.crccare.com/knowledge-sharing/national-remediation-framework. Accessed 27 April 2018
  20. Criollo R, Velasco V, Vázquez-Suné E, Serrano-Juan A, Alcaraz M, García-Gil A (2016) An integrated GIS-based tool for aquifer test analysis. Environ Earth Sci 75:391CrossRefGoogle Scholar
  21. DCLG (Department for Communities and Local Government) (2009) Multi-criteria analysis: a manual. Product Code 08ACST05703. http://eprints.lse.ac.uk/12761/1/Multi-criteria_Analysis.pdf. Accessed 27 February 2016
  22. DELWP (Department of Environment, Land, Water and Planning) (2017a) Fishermans Bend, Australia’s largest urban renewal project. www.fishermansbend.vic.gov.au. Accessed 16 May 2017
  23. DELWP (Department of Environment, Land, Water and Planning) (2017b) Andrews Labor government response to the independent inquiry into the environment protection authority. https://www.environment.vic.gov.au/__data/assets/pdf_file/0025/49741/Andrews-Labor-Government-Response-to-the-Independent-Inquiry-into-the-Environment-Protection-Aut.pdf. Accessed 4 May 2018
  24. De Sousa C, Ghoshal S (2012) Re-development of brownfield sites. In: Frank Z (ed) Metropolitan sustainability: understanding and improving the urban environment. Woodhead, Cambridge, UK, p 99–117Google Scholar
  25. Dixon T, Raco M, Catney P, Lerner DN (eds) (2007) Sustainable brownfield regeneration: liveable places from problem spaces. Blackwell, Oxford, UKGoogle Scholar
  26. Edwards M, Aldea M, Belisle M (2015) Big data is changing the environmental sciences. Environmental Perspectives, vol 1, 2015. https://www.exponent.com/knowledge/alerts/2015/02/big-data-is-changing-the-environmental-sciences/~/media/bece1234069947ffbbf1b1fff81d19c2.ashx. Accessed 12 January 2018
  27. EEA (European Environment Agency) (2015) Progress in management of contaminated sites. https://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites-3/assessment. Accessed 11 July 2018
  28. EPA Victoria (Environment Protection Authority Victoria) (2016) ‘State environment protection policies’. http://www.epa.vic.gov.au/about-us/legislation/state-environment-protection-policies. Accessed 31 March 2016
  29. Eschauzier C, Raat KJ, Stuyfsand PJ, de Voogy P (2013) Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility. Sci Tot Environ 458-460:477–485CrossRefGoogle Scholar
  30. EScIS (Earth Science Information Systems) (2018) www.escis.com.au. Accessed 11 July 2018
  31. Esri (1969) www.esri.com. Accessed 11 July 2018
  32. Frantál B, Greer-Wootten B, Klusáček P, Krejčí T, Kunc J, Martinát S (2015) Exploring spatial patterns of urban brownfields regeneration: the case of Brno, Czech Republic. Cities 44:9–18CrossRefGoogle Scholar
  33. Gallen C, Drage D, Eaglesham G, Grant S, Bowman M, Mueller JF (2017) Australia-wise assessment of perfluroroalkyl substances (PFAS) in landfill leachates. J Hazard Mater 331:132–141CrossRefGoogle Scholar
  34. Garrick DE, Hall JW, Dobson A, Damania R, Grafton RQ, Hope R, Hepburn C, Bark R, Boltz F, De Stefano L, O’Donnell E, Matthews N, Money A (2017) Valuing water for sustainable development. Science 358(6366):1003–1005CrossRefGoogle Scholar
  35. Golden Software (1983) www.goldensoftware.com. Accessed 11 July 2018
  36. Golder (Golder Associates) (2012) Preliminary land contamination study, Fishermans Bend precinct. Report for Places Victoria. http://www.fishermansbend.vic.gov.au/__data/assets/pdf_file/0035/29798/15_Volume_3_Preliminary_Land_Contamination_Study.pdf. Accessed 8 November 2017
  37. Hamid H, Li LY, Grace JR (2018) Review of the fate and transformation of per- and polyfluoroalkyl substances (PFAS) in landfills. Environ Pollut 235:78–84CrossRefGoogle Scholar
  38. Hayes F, Spurgeon DJ, Lofts S, Jones L (2018) Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. J Environ Manag 223:150–164CrossRefGoogle Scholar
  39. Hepburn E, Northway A, Bekele D, Liu G, Currell M (2018) A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ Pollut 241:787–799CrossRefGoogle Scholar
  40. Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M (2019a) Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut 248:101–113  https://doi.org/10.1016/j.envpol.2019.02.018 CrossRefGoogle Scholar
  41. Hepburn E, Northway A, Bekele D, Currell M (2019b) Incorporating perfluoroalkyl acids (PFAA) into a geochemical index for improved delineation of legacy landfill impacts on groundwater. Sci Tot Environ.  https://doi.org/10.1016/j.scitotenv.2019.02.203
  42. Holdgate G, Norvick M (2017) Geological evolution of the Holocene Yarra Delta and its relationship with Port Phillip Bay. Aust J Earth Sci 64(3):301–318CrossRefGoogle Scholar
  43. IA (Infrastructure Australia) (2016) Australian infrastructure plan, priorities and reforms for our nation’s future. Report, February 2016. http://infrastructureaustralia.gov.au/policy-publications/publications/files/Australian_Infrastructure_Plan.pdf. Accessed 11 July 2018
  44. Ionescu-Heroiu M (2010) The management of brownfields re-development: a guidance note. World Bank, BrusselsGoogle Scholar
  45. ITRC (International Technology Regulatory Council) (2017) Remediation management of complex sites. https://rmcs-1.itrcweb.org/. Accessed 27 April 18
  46. Janža M (2015) A decision support system for emergency response to groundwater resource pollution in an urban area (Ljubljana, Slovenia). Environ Earth Sci 73:3763–3774CrossRefGoogle Scholar
  47. Johnston N (2010) Unlocking the potential of brownfield sites. Remed Australasia 3:20–25Google Scholar
  48. Kumar N, Couture R-M, Millot R, Battaglie-Brunet F, Rose F (2016) Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier. Environ Sci Technol 50(14):7610–7617CrossRefGoogle Scholar
  49. Lane Consulting (1999) Report to the state of Victoria, prepared for Sheralex nominees Pty Ltd. environmental Auditor’s report, lot 1A, 69–119 Salmon Street, Port Melbourne, VictoriaGoogle Scholar
  50. Marcomini A, Suter IIGW, Critto A (eds) (2009) Decision support systems for risk-based management of contaminated sites. Springer, New YorkGoogle Scholar
  51. Moore WS (1999) The subterranean estuary: a reaction zone of groundwater and sea water. Mar Chem 65:111–125CrossRefGoogle Scholar
  52. Mullett J (2017) Groundwater contamination decision-support tool, community engagement report. RMIT University, Melbourne, AustraliaGoogle Scholar
  53. Murrie M, Nadebaum P (2014) Challenges in remediating contaminated sites, and how the NRF might respond to these challenges. Ecoforum, Gold Coast, Australia, Abstract E176Google Scholar
  54. Neilson JL (1992) Geology of the Yarra Delta. In: Peck WA, Neilson JL, Olds RJ, Seddon KD (eds) Engineering geology of Melbourne. Balkema, Rotterdam, The Netherlands, pp 223–243Google Scholar
  55. Nogués S, Arroyo NL (2016) Alternative approach to prioritization of brownfield reclamation attending to urban development potentialities: case study in a depressed industrial district in northern Spain. J Urban Plan Dev 142(1):05015002CrossRefGoogle Scholar
  56. Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikhalovsky S, Waite S, Friesl-Hanl W, Marschner B, Müller I (2009) Developing decision support tools for the selection of “gentle” remediation approaches. Sci Tot Environ 407:6132–6142CrossRefGoogle Scholar
  57. Reimann C, Garrett RG (2005) Geochemical background-concept and reality. Sci Tot Environ 350:12–27CrossRefGoogle Scholar
  58. Rijnaarts H, ter Meer J (2005) The WELCOME integrated management strategy for large scale historical soil and groundwater contaminations: introduction and example Rotterdam harbour region. NATO-CCMS, Ottawa. PowerPoint presentation. https://clu-in.org/ottawa/download/eu_welcome/welcome_intro.ppt. Accessed 25 February 2016
  59. Rizzo E, Pesce M, Pizzol L, Alexandrescu FM, Giubilato E, Critto A, Marcomini A, Bartke S (2015) Brownfield regeneration in Europe: identifying stakeholder perceptions, concerns, attitudes and information needs. Land Use Policy 48:437–453CrossRefGoogle Scholar
  60. Schädler S, Morio M, Bartke S, Finkel M (2012) Integrated planning and spatial evaluation of megasite remediation and re-use options. J Contam Hydrol 127:88–100CrossRefGoogle Scholar
  61. Senversa (2013) Report to the state of Victoria, prepared for Celia burrows and Bernard Wells. Environmental audit report, 1/68 Ingles Street, Port Melbourne, VictoriaGoogle Scholar
  62. SKM (Sinclair, Knight, Merz) (1999) Report to The State of Victoria and Melbourne Grammar School. Report of Environmental Audit: Todd Road, Port Melbourne. November 1999Google Scholar
  63. Stevenazzi S, Masetti M, Nghiem SV, Sorichetta A (2015) Groundwater vulnerability maps derived from a time-dependent method using satellite scatterometer data. Hydrogeol J 23:631–647CrossRefGoogle Scholar
  64. Stumpp C, Zurek AJ, Wachniew P, Gargini A, Gemitzi A, Filippini M, Witczak S (2016) A decision tree tool supporting the assessment of groundwater vulnerability. Environ Earth Sci 75:1057CrossRefGoogle Scholar
  65. Susilawati C, Thomas K (2012) Perception of brownfield sites: myth or reality? Remed Australasia 11:34–37Google Scholar
  66. Thornton G, Franz M, Edwards D, Pahlen G, Nathanail P (2007) The challenge of sustainability: incentives for brownfield regeneration in Europe. Environ Sci Pol 10:116–134CrossRefGoogle Scholar
  67. UN (United Nations) (2018) Department of Economic and Social Affairs, Population Division, 2018 Revision of World Urbanization Prospects, UN, New YorkGoogle Scholar
  68. URS (URS Australia) (2014) Report to the state of Victoria, prepared for Pental lLtd. Environmental audit of risk to the environment: section 53V audit, 14 Woodruff Street, Port Melbourne, Victoria. URS Australia, Melbourne, AustraliaGoogle Scholar
  69. USEPA (United States Environment Protection Agency) (2009) Building vibrant communities: community benefits of land revitalisation. USEPA, Washington, DC. http://www.epa.gov/sites/production/files/2015-09/documents/comben.pdf. Accessed 8 February 2016
  70. USEPA (United States Environment Protection Agency) (2015) Draft EJ 2020 Action Agenda Framework, USEPA, Washington, DC. http://www3.epa.gov/environmentaljustice/resources/policy/ej2020/draft-framework.pdf. Accessed 8 February 2016
  71. USEPA (United States Environment Protection Agency) (2018) Overview of the Brownfields program. USEPA, Washington, DC. https://www.epa.gov/brownfields/overview-brownfields-program. Accessed 11 July 2018
  72. Vadiati M, Adamowski J, Beynaghi A (2018) A brief overview of trends in groundwater research: progress towards sustainability? J Environ Manag 223:849–851CrossRefGoogle Scholar
  73. Wang Y, Jiao JJ, Zhang K, Zhou Y (2016) Enrichment and mechanisms of heavy metal mobility in coastal Quaternary groundwater system of the Pearl River Delta, China. Sci Tot Environ 545–546:493–502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emily Hepburn
    • 1
    Email author
  • Anne Northway
    • 2
  • Dawit Bekele
    • 3
    • 4
  • Matthew Currell
    • 1
  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Environment Protection Authority VictoriaMelbourneAustralia
  3. 3.Global Centre for Environmental RemediationUniversity of NewcastleCallaghanAustralia
  4. 4.Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)CallaghanAustralia

Personalised recommendations