Advertisement

Evaluating the responses of alluvial and bedrock aquifers to earthquakes (ML5.1 and ML5.8) using hydrological and environmental tracer data

  • Dugin Kaown
  • Dong-Chan Koh
  • Heejung Kim
  • Hee Jae Koh
  • Jaeyeon Kim
  • Sanghoon Lee
  • Inwoo Park
  • Kang-Kun LeeEmail author
Paper
  • 92 Downloads

Abstract

In Gyeongju, South Korea, local magnitude ML5.1 and ML5.8 earthquakes occurred on 12 September 2016; ML4.5 aftershocks and >500 aftershocks with ML > 1.5 were observed over the next 3 months. Responses of the aquifers were compared using hydrological and environmental tracer data (noble gases, δ18O, δD, 3H, and 13C). To assess the hydrologic response to the earthquake activity by the shallow (alluvial) and deep (bedrock) aquifers, time series data from the national groundwater monitoring wells were compared. Groundwater-level changes were not observed in most alluvial wells, while groundwater level and electrical conductivity (EC) increased in the confined igneous rock for several days to months after the earthquake activity. Noble gas anomalies in groundwater were closely related to the epicentral distance, lithology, and aquifer type. The relatively low concentration of 3H (<0.8 TU) and depleted values of δ18O and δD in the alluvial and bedrock aquifers suggest they were affected by upwelling of deep and old water. Elevated values of δ13C and 222Rn were observed in wells close to the epicenter. Groups resulting from cluster analysis using environmental tracer data were closely related to the responses of the earthquake on the aquifers of different types (alluvial and bedrock), lithologies, and distances from the epicenter. Groundwater-level change and geochemical response after the earthquake activity showed different correlations depending on aquifer and fault types. Combined use of groundwater level, EC, and environmental tracer data in groundwater can be useful to understand the origin and preferential flow paths of water during and after earthquakes.

Keywords

Earthquake Environmental tracer Noble gas Radon South Korea 

Evaluation des réponses des aquifères alluviaux et de socle aux séismes (ML 5.1 et ML 5.8) à l’aide de données hydrologiques et de traceurs environnementaux

Résumé

A Gyeongju, Corée du Sud, des séismes de magnitude locale ML 5.1 et ML 5.8 ont eu lieu le 12 septembre 2016; des répliques ML 4.5 et >500 répliques avec ML > 1.5 ont été observées pendant les trois mois suivant. Les réponses des aquifères ont été comparées avec l’utilisation de données hydrologiques et de traceurs environnementaux (gaz rares, δ18O, δD, 3H, et 13C). Pour évaluer la réponse hydrologique des aquifères superficiels (alluviaux) et profonds (socle) à l’activité sismique, les séries temporelles de données de puits d’observations nationaux ont été comparées. Des changements de niveaux des eaux souterraines n’ont pas été observés dans la plupart des puits des alluvions, alors que le niveau d’eau souterraine et la conductivité électrique (EC) ont augmenté dans les aquifères captifs de roches ignées pendant plusieurs jours à plusieurs mois après l’activité sismique. Les anomalies en gaz rares dans les eaux souterraines étaient étroitement liées à la distance à l’épicentre, à la lithologie et au type d’aquifère. Les concentrations relativement faibles de 3H (<0.8 TU) et les valeurs appauvries de δ18O et δD dans les aquifères alluviaux et de socle suggèrent qu’ils ont été affectés par une remontée d’eau profonde et ancienne. Les valeurs élevées de δ13C et 222Rn ont été observées aux puits proches de l’épicentre. Les groupes qui résultent d’une analyse de classification en utilisant les données de traceurs environnementaux étaient étroitement liés aux réponses des aquifères de différents types (alluviaux et socle), aux lithologies, et aux distances à l’épicentre. Le changement de niveau d’eau souterraine et la réponse géochimique après l’activité sismique ont montré différentes corrélations qui dépendent des types d’aquifères et de failles. L’utilisation conjointe du niveau d’eau souterraine, de CE, et des données de traceurs environnementaux dans les eaux souterraines peut être utile à la compréhension de l’origine et des chemins d’écoulements préférentiels de l’eau pendant et après les séismes.

Evaluación de las respuestas de los acuíferos aluviales y de basamento a los terremotos (ML5.1 y ML5.8) mediante el uso de datos de trazadores hidrológicos y ambientales

Resumen

En Gyeongju, Corea del Sur, se produjeron terremotos de magnitud local (ML5.1 y ML5.8) el 12 de septiembre de 2016; en los tres meses siguientes se observaron réplicas (ML4.5 y >500 réplicas (ML > 1.5). Las respuestas de los acuíferos se compararon utilizando datos hidrológicos y ambientales (gases nobles, δ18O, δD, 3H, y 13C). Para evaluar la respuesta hidrológica a la actividad sísmica de los acuíferos superficiales (aluviales) y profundos (basamento), se compararon datos de series cronológicas de los pozos de monitoreo de aguas subterráneas a nivel nacional. No se observaron cambios en el nivel del agua subterránea en la mayoría de los pozos aluviales, mientras que el nivel del agua subterránea y la conductividad eléctrica (EC) aumentaron en la roca ígnea confinada durante varios días o meses después de la actividad sísmica. Las anomalías de los gases nobles en el agua subterránea estaban estrechamente relacionadas con la distancia al epicentro, la litología y el tipo de acuífero. La concentración relativamente baja de 3H (<0.8 TU) y los valores empobrecidos de δ18O y δD en los acuíferos aluviales y del basamento sugieren que fueron afectados por el afloramiento de aguas profundas y viejas. Se observaron valores elevados de δ13C y 222Rn en pozos cercanos al epicentro. Los grupos resultantes del análisis de clústeres utilizando datos de trazadores ambientales estaban estrechamente relacionados con las respuestas de los acuíferos de diferentes tipos (aluviales y de basamento), litologías y distancias desde el epicentro. El cambio en el nivel del agua subterránea y la respuesta geoquímica después de la actividad sísmica mostraron diferentes correlaciones dependiendo de los tipos de acuíferos y el fallamiento. El uso combinado de datos sobre el nivel del agua subterránea, la CE y el trazador ambiental en el agua subterránea puede ser útil para comprender el origen y las trayectorias del flujo preferencial del agua durante y después de los terremotos.

利用水文和环境示踪数据评估冲积和基岩含水层对地震的响应(ML5.1和ML5.8)

摘要

在韩国庆州,2016年9月12日发生了震级ML5.1和ML5.8的地震;接下来的三个月中观察到ML4.5的余震和ML > 1.5的500余次的余震。使用水文和环境示踪剂数据(惰性气体,δ18O,δD,3H和13C)比较了含水层的响应。为了评估浅层(冲积层)和深层(基岩)含水层对地震活动的水文响应,比较了国家地下水监测井的时间序列数据。在大多数冲积井中未观察到地下水位变化,而地震活动后地下水位和电导率(EC)在承压火成岩中在数天至数月内增加。地下水中的惰性气体异常与震中距离、岩性和含水层类型密切相关。冲积层和基岩含水层中3H(<0.8 TU)浓度相对较低,而且δ18O和δD耗尽,表明它们受到深部老水上涌的影响。在靠近震中的井中观察到δ13C和222Rn升高。使用环境示踪剂数据进行聚类分析得到的类与不同类型含水层(冲积层和基岩)、岩性和距震中距离的响应密切相关。地震活动后的地下水位变化和地球化学响应表现出不同的相关性,这取决于含水层和断层类型。地下水中地下水位,EC和环境示踪剂数据的综合应用可以有助于弄清地震期间和之后水的补给来源和优先流动路径。

Avaliação das respostas de aquíferos aluviais e fraturados a terremotos (ML5.1 e ML5.8) usando dados de traçadores hidrológicos e ambientais

Resumo

Em Gyeongju, Coréia do Sul, terremotos de magnitude local ML5.1 e ML5.8 ocorreram em 12 de setembro de 2016; ML4.5 réplicas e >500 tremores secundários com ML > 1.5 foram observados nos próximos três meses. As respostas dos aquíferos foram comparadas usando dados de traçadores hidrológicos e ambientais (gases nobres, δ18O, δD, 3H, e 13C). Para avaliar a resposta hidrológica à atividade sísmica pelos aquíferos raso (aluvial) e profundo (leito de rocha), os dados das séries temporais dos poços nacionais de monitoramento das águas subterrâneas foram comparados. Mudanças no nível da água subterrânea não foram observadas na maioria dos poços aluviais, enquanto o nível do lençol freático e a condutividade elétrica (CE) aumentaram na rocha ígnea confinada por vários dias a meses após a atividade sísmica. Anomalias de gás nobres nas águas subterrâneas estavam intimamente relacionadas com a distância epicentral, litologia e tipo de aquífero. A concentração relativamente baixa de 3H (<0.8 TU) e os valores deplecionados de δ18O e δD nos aquíferos aluviais e fraturados sugerem que eles foram afetados pela ressurgência de águas profundas e antigas. Valores elevados de δ13C e 222Rn foram observados em poços próximos ao epicentro. Grupos resultantes da análise de agrupamento usando dados de traçadores ambientais foram intimamente relacionados com as respostas dos aquíferos de diferentes tipos (aluviais e rochosos), litologias e distâncias do epicentro. Mudanças no nível da água subterrânea e respostas geoquímicas após a atividade sísmica mostraram diferentes correlações dependendo dos tipos de aquíferos e falhas. O uso combinado dos dados do nível do lençol freático, da CE e do traçador ambiental nas águas subterrâneas pode ser útil para entender a origem e os caminhos de fluxo preferencial da água durante e após os terremotos.

Notes

Acknowledgements

Suggestions provided by Dr. Rolf Kipfer at the Swiss Federal Institute of Aquatic Science and Technology are kindly acknowledged.

Funding information

This study was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP; No. CAP-17-05-KIGAM).

References

  1. Amoruso A, Crescentini L, Petitta M, Rusi S, Tallini M (2011) Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, central Italy. Hydrol Process 25:1754–1764CrossRefGoogle Scholar
  2. Andrén M, Stockmann G, Skelton A, Sturkell E, Mörth C, Guðrúnardótti HR, Keller NS, Odling N, Dahrén B, Broman C, Balic-Zunic T, Hjartarson H, Siegmund H, Freund F, Kockum I (2016) Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland. J Geophys Res Solid Earth 121:2315–2337.  https://doi.org/10.1002/2015JB012614 CrossRefGoogle Scholar
  3. Aydın H, Hilton DR, Güleç N, Mutlu H (2015) Post-earthquake anomalies in He–CO2 isotope and relative abundance systematics of thermal waters: the case of the 2011 Van earthquake, eastern Anatolia, Turkey. Chem Geol 411:1–11CrossRefGoogle Scholar
  4. Barberio MD, Barbieri M, Billi A, Doglioni C, Petitta M (2017) Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci Rep 7:11735.  https://doi.org/10.1038/s41598-017-11990-8 CrossRefGoogle Scholar
  5. Batlle-Aguilar J, Banks EW, Batelaan O, Kipfer R, Brennwald MS, Cook PG (2017) Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers. J Hydrol 546:150–165CrossRefGoogle Scholar
  6. Bauer SJ, Gardner WP, Lee H (2016) Release of radio-genic noble gases as a new signal of rock deformation. Geophys Res Lett 43:10,688–10,694.  https://doi.org/10.1002/2016GL070876 CrossRefGoogle Scholar
  7. Chang KH (1975) Cretaceous stratigraphy, sedimentation and tectonics of southeastern Korea (in Korean with English abstract). J Geol Soc Korea 13:76–90Google Scholar
  8. Choi SJ, Jeon JS, Choi JH, Kim B, Ryoo CR, Hong DG, Chwae U (2014) Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quat Int 344:53–63CrossRefGoogle Scholar
  9. Chough SK, Sohn YK (2010) Tectonic and sedimentary evolution of a cretaceous continental arc-back arc system in the Korean peninsula: new view. Earth Sci Rev 101:225–249CrossRefGoogle Scholar
  10. Claesson L, Skelton A, Graham C, Dietl C, Morth M, Torssander P, Kockum I (2004) Hydrogeochemical changes bedfore and after a major earthquake. Geology 32(8):641–644Google Scholar
  11. Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T (2009) Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region-Neotectonic connections and implications for groundwater systems. Geol Soc Am Bull 121(7–8):1034–1053CrossRefGoogle Scholar
  12. Elkhoury JE, Brodsky EE, Agnew DC (2006) Seismic waves increase permeability. Nature 44:1135–1138CrossRefGoogle Scholar
  13. Galassi D, Lombardo P, Fiasca B, Cioccio A, Lorenzo T, Petitta M, Carlo P (2014) Earthquakes trigger the loss of groundwater biodiversity. Sci Rep 4:6273.  https://doi.org/10.1038/srep06 CrossRefGoogle Scholar
  14. Gau H, Chen T, Chen J, Liu C (2007) Time series decomposition of groundwater level changes in wells due to the Chi-Chi earthquake in Taiwan: a possible hydrological precursor to earthquakes. Hydrol Process 21:510–524CrossRefGoogle Scholar
  15. Hong T, Lee J, Kim W, Hahm I, Woo N, Park S (2017) The 12 September 2016 M L5.8 midcrustal earthquake in the Korean peninsula and its seismic implications. Geophys Res Lett 44:3131–3138.  https://doi.org/10.1002/2017GL072899.273 CrossRefGoogle Scholar
  16. Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269:60–61CrossRefGoogle Scholar
  17. Ingebritsen SE, Manga M (2014) Earthquakes: hydrogeochemical precursor. Nat Geosci 7:697–698CrossRefGoogle Scholar
  18. Jeong GY, Cheong CS (2005) Recurrent events on a Quaternary fault recorded in the mineralogy and micromorphology of a weathering profile, Yangsan fault system, Korea. Quat Res 64(2):221–233CrossRefGoogle Scholar
  19. Kaown D, Hyun Y, Bae G, Lee K (2007) Factors affecting the spatial pattern of nitrate contamination in shallow groundwater. J Environ Qual 36:1479–1487CrossRefGoogle Scholar
  20. Kaown D, Koh D, Lee K (2009) Effects of groundwater residence time and recharge rate on nitrate contamination deduced from δ18O, δD, 3H/3He and CFCs in a small agricultural area in Chuncheon Korea. J Hydrol 366:101–111CrossRefGoogle Scholar
  21. Kaown D, Koh D, Solomon DK, Yoon Y, Yang J, Lee K (2014) Delineation of recharge patterns and contaminant transport using 3H–3He in a shallow aquifer contaminated by chlorinated solvents in South Korea. Hydrogeol J 22:1041–1054CrossRefGoogle Scholar
  22. Kaown D, Koh E, Mayer B, Kim H, Park D, Park B, Lee K (2018) Application of multiple-isotope and groundwater-age data to identify factors affecting the extent of denitrification in a shallow aquifer near a river in South Korea. Hydrogeol J 26:2009–2020CrossRefGoogle Scholar
  23. Kim H, Kaown D, Mayer B, Lee J, Lee K (2018) Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone. Sci Total Environ 631–632:755–764CrossRefGoogle Scholar
  24. Kim NJ, Kwon YI, Jin MS (1971) Geological map of the Morayng sheet (1:50,000). Geological Survey of Korea, SeoulGoogle Scholar
  25. Kim Y, Rhie J, Kang K, Kim K, Kim M, Lee S (2016) The 12 September 2016 Gyeongju earthquakes: 1. observation and remaining questions. Geosci J 20(6):747–752CrossRefGoogle Scholar
  26. King C, Azuma S, Ohno M, Asai Y, He P, Kitagawa Y, Igarashi G, Wakita H (2000) In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys J Int 143:469–477CrossRefGoogle Scholar
  27. Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:615–700Google Scholar
  28. Koh D, Ha K, Lee K, Yoon Y, Ko K (2012) Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island. J Hydrol 432–433:61–74CrossRefGoogle Scholar
  29. Koh E, Lee E, Kaown D, Green CT, Koh D, Lee K, Lee S (2018) Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system. Hydrol Process 32:923–938CrossRefGoogle Scholar
  30. Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69(15):3857–3872CrossRefGoogle Scholar
  31. Lee J (2016) Gyeongju earthquakes recorded in daily groundwater data at national groundwater monitoring stations in Gyeongju. J Soil Groundwater Environ 21(6):80–86CrossRefGoogle Scholar
  32. Lee K, Jin YG (1991) Segmentation of the Yangsan fault system: geophysical studies on major faults in the Kyeongsang Basin. J Geol Soc Korea 27:434–449Google Scholar
  33. Lee KS, Lee CB (1999) Oxygen and hydrogen isotope composition of precipitation and river waters in South Korea. J Geol Soc Korea 35(1):73–84Google Scholar
  34. Lee S, Ha K, Hamm S, Ko K (2013) Groundwater responses to the 2011 Tohoku earthquake on Jeju Island, Korea. Hydrol Process 27:1147–1157CrossRefGoogle Scholar
  35. Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Gröning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250.  https://doi.org/10.1016/S0012-821X(03)00206-1 CrossRefGoogle Scholar
  36. Liu C, Chia Y, Chuang P, Chiu Y, Tseng T (2018) Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeol J 26:451–465CrossRefGoogle Scholar
  37. Manga M (2001) Origin of postseismic streamflow changes inferred from baseflow recession and magnitude-distance relation. Geophys Res Lett 28:2133–2136.  https://doi.org/10.1029/2000GL012481 CrossRefGoogle Scholar
  38. Manga M, Wang C (2007) Earthquake hydrology in treatise on geophysics, vol 4, 2nd edn. Elsevier, Amsterdam, pp 293–320CrossRefGoogle Scholar
  39. Montgomery DR, Manga M (2003) Streamflow and water well responses to earthquakes. Science 300:2047–2049CrossRefGoogle Scholar
  40. Newell DL, Jessup MJ, Hilton DR, Shaw CA, Hughes CA (2015) Mantle-derived helium in hot springs of the cordillera Blanca, Peru: implications for mantle-to-crust fluid transfer in a flat-slab subduction setting. Chem Geol 417:200–209CrossRefGoogle Scholar
  41. Niwa M, Takeuchi R, Onoe H, Tsuyuguchi K, Asamori K, Umeda K, Sugihara K (2012) Groundwater pressure changes in Central Japan induced by the 2011 off the Pacific coast of Tohoku earthquake. Geochem Geophys Geosyst 13:Q05020.  https://doi.org/10.1029/2012GC004052 CrossRefGoogle Scholar
  42. Orihara Y, Kamogawa M, Nagao T (2014) Preseismic changes of the level and temperature of confined groundwater related to the 2011 Tohoku earthquake. Sci Rep 4:6907.  https://doi.org/10.1038/srep06907 CrossRefGoogle Scholar
  43. Pavin M, Tadakuma N, Asaue H, Koike K (2014) Delineation and interpretation of spatial coseismic response of groundwater levels in shallow and deep parts of an alluvial plain to different earthquakes: a case study of the Kumamoto City area, southwest Japan. J Asian Earth Sci 83:35–47CrossRefGoogle Scholar
  44. Petitta M, Mastrorillo L, Preziosi E, Banzato F, Barberio M, Billi A, Cambi C, De Luca G, Di Carlo G, Di Curzio D, Di Salvo C, Nanni T, Palpacelli S, Rusi S, Saroli M, Tallini M, Tazioli A, Valigi D, Vivalda P, Doglioni C (2018) Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol J 26:1009–1026CrossRefGoogle Scholar
  45. Reddy DV, Nagabhushanam P (2012) Chemical and isotopic seismic precursory signatures in deep groundwater: cause and effect. Appl Geochem 27:2348–2355CrossRefGoogle Scholar
  46. Reddy DV, Nagabhushanam P, Sukhija BS (2011) Earthquake (M 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching—mixing model in Koyna, India. Geophys J Int 184:359–370CrossRefGoogle Scholar
  47. Saby M, Larocque M, Pinti DL, Barbecot F, Sano Y, Castro MC (2016) Linking groundwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec, Canada. Appl Geochem 65:1–13CrossRefGoogle Scholar
  48. Sano Y, Kagoshima T, Takahata N, Nishio Y, Roulleau E, Pinti DL, Fischer TP (2015) Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Sci Rep 5:13069.  https://doi.org/10.1038/srep13069 CrossRefGoogle Scholar
  49. Sano Y, Takahata N, Kagoshima T, Shibata T, Onouem T, Zhao D (2016) Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in southwest Japan. Sci Rep 6:37939.  https://doi.org/10.1038/srep37939 CrossRefGoogle Scholar
  50. Schlosser P, Stute M, Dörr H, Sonntag C, Münnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89 (3–4):353–362Google Scholar
  51. Shi Z, Wang G (2015) Sustained groundwater level changes and permeability variation in a fault zone following the 12 May 2008, mw 7.9 Wenchuan earthquake. Hydrol Process 29:2659–2667CrossRefGoogle Scholar
  52. Skelton A, Andrén M, Kristmannsdóttir H, Stockmann G, Mörth C, Sveinbjörnsdóttir A, Jónsson S, Sturkell E, Guðrúnardóttir R, Hjartarson H, Siegmund H, Kockum I (2014) Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat Geosci 7:752–755CrossRefGoogle Scholar
  53. Solomon DK, Cook PG (2000). 3H and 3He. In: Cook G, Herzeg AL (eds) Environmental tracers in subsurface hydrology. Springer, Boston. p 397–424Google Scholar
  54. Song SR, Chen YL, Liu CM, Ku WY, Chen HF, Liu YJ, Kuo LW, Yang TF, Chen CH, Liu TK, Lee M (2005) Hydrochemical changes in spring waters in Taiwan: implications for evaluating sites for earthquake precursory monitoring. Terr Atmos Ocean Sci 16:745–762CrossRefGoogle Scholar
  55. Tolstikhin IN, Lehmann BE, Loosli HH, Gautschi A (1996) Helium and argon isotopes in rocks, minerals, and related groundwaters: a case study in northern Switzerland. Geochim Cosmochim Acta 60:1497–1514.  https://doi.org/10.1016/0016-7037(96)00036-1 CrossRefGoogle Scholar
  56. Tomonaga Y, Marzocchi R, Pera S, Pfeifer H, Kipfer R, Decrouy L, Vennemann T (2017) Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: application to the Ceneri Base tunnel (Switzerland). J Hydrol 545:395–409CrossRefGoogle Scholar
  57. Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the great Artesian Basin, Australia. Geochim Cosmochim Acta 49(5):1211–1218.  https://doi.org/10.1016/0016-7037(85)90011-0 CrossRefGoogle Scholar
  58. Umeda K, Ninomiya A (2009) Helium isotopes as a tool for detecting concealed active faults. Geochem Geophys Geosyst 10:Q08010.  https://doi.org/10.1029/2009GC002501 CrossRefGoogle Scholar
  59. Wang C, Manga M (2010) Hydrologic responses to earthquakes and a general metric. Geofluid 10:201–216CrossRefGoogle Scholar
  60. Wei W, Aeschbach-Hertig W, Chen Z (2015) Identification of He sources and estimation of He ages in groundwater of the North China Plain. Appl Geochem 63:182–189.  https://doi.org/10.1016/j.apgeochem.2015.08.010 CrossRefGoogle Scholar
  61. Weise SM, Bräuer K, Kämpf H, Strauch G, Koch U (2001) Transport of mantle volatiles through the crust traced by seismically released fluids: a natural experiment in the earthquake swarm area Vogtland/NW Bohemia, Central Europe. Tectonophysics 336(1):137–150CrossRefGoogle Scholar
  62. Yan R, Woith H, Wang R (2014) Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys J Int 199(1):533–548.  https://doi.org/10.1093/gji/ggu196 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dugin Kaown
    • 1
  • Dong-Chan Koh
    • 2
    • 3
  • Heejung Kim
    • 1
  • Hee Jae Koh
    • 2
  • Jaeyeon Kim
    • 1
  • Sanghoon Lee
    • 1
  • Inwoo Park
    • 1
  • Kang-Kun Lee
    • 1
    Email author
  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Korea Institute of Geoscience and Mineral ResourcesDaejeonRepublic of Korea
  3. 3.University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations