Advertisement

Hydrogeology Journal

, Volume 27, Issue 6, pp 1999–2010 | Cite as

Solute transport performance analysis of equivalent apertures in a single undisturbed basaltic fracture

  • Murilo LucasEmail author
  • Gabriel Dias Cantareira
  • Edson Wendland
Report
  • 120 Downloads

Abstract

Four bench-scale solute injection experiments were conducted in a natural undisturbed basaltic fractured core of the Serra Geral Formation (SGF) (Brazil) to assess the performance of the equivalent apertures on conservative solute transport. Fracture aperture is particularly important in controlling solute transport in fractured-rock aquifers. The spatial heterogeneity of fracture apertures complicates solute transport modeling. Scientific researchers and mainly hydrogeology professionals still adopt a single value for the fracture aperture field, i.e., an equivalent aperture. However, there is a lack of information about the most suitable equivalent aperture associated with solute transport phenomena, especially for basaltic fractured aquifers. The objective of this study was to evaluate the performance of three types of equivalent apertures on conservative solute transport in a basaltic aquifer sample. The fracture aperture field was measured using the advanced high-resolution and nondestructive technique, x-ray micro-computed tomography. The performance of the equivalent apertures was evaluated using an analytical solution of the one-dimensional advection-dispersion equation (ADE) compared to observed breakthrough curves. As a result, the arithmetic mean of the measured aperture field was 111.74 ± 54.26 μm. The analytical solution of ADE coupled with mass balance aperture was able to predict breakthrough behavior, especially for low volumetric flow rates. This study demonstrates that the mass balance aperture should be adopted as an equivalent aperture instead of the hydraulic and friction loss equivalent aperture when inertial forces of macroscopic flow are negligible. The findings provide a step forward towards better understanding of groundwater contamination risk in basaltic fractured aquifers.

Keywords

Breakthrough curve Igneous rock Laboratory experiments/measurements X-ray micro-computed tomography 

Analyse de la performance des ouvertures équivalentes sur le transport de soluté dans une fracture basaltique unique et intacte

Résumé

Quatre expériences d’injection de soluté ont été réalisées au laboratoire dans une carotte basaltique fracturée intacte de la formation Serra Geral (SGF) (Brésil) pour évaluer la performance des ouvertures équivalentes sur le transport conservatif de soluté. L’ouverture de fractureest particulièrement importante en ce qui concerne le contrôle du transport de soluté dans les aquifères de roches fracturées. L’hétérogénéité spatiale des ouvertures de fracture complique la modélisation du transport de solutés. Les chercheurs, et principalement les praticiens en hydrogéologie, adoptent toujours une valeur unique pour le champ d’ouverture de fracture, c’est-à-dire une ouverture équivalente. Cependant, on manque d’information à propos des ouvertures équivalentes les plus adaptées au processus de transport de soluté, particulièrement pour les aquifères basaltiques fracturés. L’objectif de cette étude était d’évaluer la performance de trois types d’ouvertures de fracture équivalentes sur le transport conservatif de soluté dans un échantillon d’aquifère basaltique. Le champ d’ouverture de fracture a été mesuré en utilisant la technique de pointe, haute résolution et non destructive, de tomographie à rayon-x par micro-ordinateur. La performance des ouvertures équivalentes a été évaluée par comparaison des résultats d’une solution analytique de l’équation d’advection-dispersion unidimensionnelle (ADE) avec les courbes de restitution observées. En termes de résultats, la moyenne arithmétique du champ d’ouverture mesuréest de 111.74 ± 54.26 μm. La solution analytique d’ADE couplée avec l’ouverture par bilan de masse a été capable de prédire le comportement en termes de restitution, notamment pour les faibles débits volumétriques. Cette étude démontre que l’ouverture par bilan de masse devrait être adoptée comme ouverture de fracture équivalente plutôt que l’ouverture équivalente par perte de friction et hydraulique, lorsque les forces inertielles du flux macroscopique sont négligeables. Ces résultats constituent un progrès en vue de la meilleure compréhension du risque de contamination des eaux souterraines dans les aquifères basaltiques fracturés.

Análisis del comportamiento del transporte de solutos de aberturas equivalentes en una sola fractura basáltica no perturbada

Resumen

Se realizaron cuatro experimentos de inyección de soluto a escala de laboratorio en un núcleo basáltico natural fracturado y no perturbado de la Formación Serra Geral (SGF) (Brasil) para evaluar el funcionamiento de las aberturas equivalentes en el transporte de un soluto conservativo. La abertura de la fractura es particularmente importante para controlar el transporte de solutos en acuíferos de rocas fracturadas. La heterogeneidad espacial de las aberturas de las fracturas complica el modelado del transporte de solutos. Los investigadores científicos y principalmente los profesionales de la hidrogeología todavía adoptan un valor único para el campo de apertura de la fractura, es decir, una abertura equivalente. Sin embargo, se carece de información sobre la abertura equivalente más adecuada asociada a los fenómenos de transporte de solutos, especialmente en el caso de acuíferos basálticos fracturados. El objetivo de este estudio fue evaluar el desempeño de tres tipos de aberturas equivalentes en el transporte de un soluto conservativo en una muestra de acuífero basáltico. El campo de la abertura de la fractura se midió utilizando una técnica avanzada de alta resolución y no destructiva, la tomografía microcomputada de rayos X. El funcionamiento de las aberturas equivalentes se evaluó utilizando una solución analítica de la ecuación unidimensional de advección-dispersión (ADE) comparada con las curvas de avance observadas. Como resultado, la media aritmética del campo de abertura medido fue 111.74 ± 54.26 μm. La solución analítica de ADE junto con la abertura del balance de masa fue capaz de predecir el comportamiento de penetración, especialmente para caudales volumétricos bajos. Este estudio demuestra que la abertura del balance de masa debe ser adoptada como una abertura equivalente en lugar de la abertura hidráulica y la pérdida de fricción equivalente cuando las fuerzas inerciales del flujo macroscópico son insignificantes. Los resultados proporcionan un paso adelante hacia una mejor comprensión del riesgo de contaminación de las aguas subterráneas en los acuíferos basálticos fracturados.

单条未扰动玄武岩裂缝中等效开度的溶质运移效果分析

摘要

为评估等效开度对保守性溶质运移的效果,利用Serra Geral构造(SGF)(巴西)天然未扰动的玄武岩裂缝岩心开展了四次实验室规模的溶质注入实验。裂缝开度对控制裂隙岩含水层中溶质运移尤为重要。裂缝开度的空间非均匀性使溶质运输模型复杂化。科学研究人员和大多数水文地质专业人员仍视裂缝开度为定值,即等效开度。然而,缺乏与溶质运移现象相关的最适合的等效开度信息,特别是在玄武岩裂缝含水层中。本研究的目的是评估玄武岩含水层样品中保守性溶质运移的三种等效开度的效果。采用先进的高分辨率和非破坏性技术(X射线计算机断层成像)来测量裂缝开度。使用一维对流弥散方程(ADE)的解析解与观察到的穿透曲线相比较来评估等效开度的效果。结果发现,测量的开度算术平均值为111.74 ± 54.26 μm。 耦合质量平衡开度的ADE解析解可以预测穿透行为,特别是对于低体积流量。该研究表明当宏观流动的惯性力可以忽略不计时,质量平衡开度应采用等效开度,而不是水力和摩擦损失等效开度。这些发现有助于更进一步理解玄武岩裂缝含水层中的地下水污染风险。

Análise de desempenho do transporte de soluto de aberturas equivalentes em uma única fratura basáltica indeformada

Resumo

Quatro experimentos de injeção de soluto, em escala de bancada, foram conduzidos em uma amostra basáltica fraturada, natural, indeformada da Formação Serra Geral (FSG) (Brasil) para avaliar o desempenho das aberturas equivalentes no transporte conservativo de soluto. A abertura da fratura é particularmente importante no controle do transporte de soluto em aquíferos de rocha fraturada. A heterogeneidade espacial das aberturas da fratura complica a modelagem do transporte de soluto. Pesquisadores científicos e, principalmente, profissionais da hidrogeologia ainda adotam um valor único para o campo de abertura, p.ex., uma abertura equivalente. No entanto, há uma falta de informação sobre a abertura equivalente mais adequada, associada ao fenômeno do transporte de soluto, especialmente para aquíferos basálticos fraturados. O objetivo deste estudo foi avaliar o desempenho de três aberturas equivalentes no transporte conservativo de soluto em uma amostra de aquífero basáltico. O campo de abertura da fratura foi medido usando uma técnica avançada de alta resolução e não destrutiva, a microtomografia de raios-x. O desempenho das aberturas equivalentes foi avaliado usando uma solução analítica da equação unidimensional de advecção-dispersão (EAD) comparada às curvas de passagem observadas. Como resultado, a média aritmética do campo de abertura medido foi 111.74 ± 54.26 μm. A solução analítica da EAD em conjunto com a abertura de balanço de massa foi capaz de predizer o comportamento das curvas de passagem, principalmente para baixas taxas de escoamento volumétrico. Este estudo demonstra que a abertura de balanço de massa deveria ser adotada como a abertura equivalente, ao invés da abertura equivalente hidráulica e de perda por atrito, quando as forças inerciais macroscópicas são negligenciáveis. As descobertas fornecem um passo à frente em direção à melhor compreensão do entendimento do risco de contaminação das águas subterrâneas em aquíferos basálticos fraturados.

Notes

Funding information

The first author would like to thank the National Council for Scientific and Technological Development (CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support (grant agreement numbers 141877/2012-0 and 481477/2012-8).

References

  1. Abelin H, Birgersson L, Widén H, Agren T, Moreno L, Neretnieks I (1994) Channeling experiments in crystalline fractured rocks. J Contam Hydrol 15(3):129–158.  https://doi.org/10.1016/0169-7722(94)90022-1
  2. Araújo L, França A, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer System, USA. Hydrogeol J 7(3):337–336.  https://doi.org/10.1007/s100400050205 Google Scholar
  3. Bear J (1979) Hydraulics of groundwater. Dover, Mineola, NYGoogle Scholar
  4. Becker MW, Shapiro AM (2000) Tracer transport in fractured crystalline rock: evidence of nondiffusive breakthrough tailing. Water Resour Res 36(7):1677–1686.  https://doi.org/10.1029/2000WR900080 Google Scholar
  5. Becker MW, Tsoflias G (2010) Comparing flux-averaged and resident concentration in a fractured bedrock using ground penetrating radar. Water Resour Res 46(W09518):1–12.  https://doi.org/10.1029/2009WR008260 Google Scholar
  6. Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol J 11(4):418–433.  https://doi.org/10.1007/s10040-003-0268-2 Google Scholar
  7. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV Library. O’Reilly Media, SebastpolGoogle Scholar
  8. Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res Solid Earth 92(B2):1337–1347.  https://doi.org/10.1029/JB092iB02p01337 Google Scholar
  9. Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res Solid Earth 90(B14):12575–12582.  https://doi.org/10.1029/JB090iB14p12575 Google Scholar
  10. Cardenas MB, Slottke DT, Ketcham RA, Sharp JM Jr (2007) Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophys Res Lett 34(L14404):1–6.  https://doi.org/10.1029/2007GL030545 Google Scholar
  11. Chan RH, Ho CW, Nikolova M (2005) Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans Image Process 14(10):1479–1485.  https://doi.org/10.1109/TIP.2005.852196 Google Scholar
  12. Cherubini C, Giasi CI, Pastore N (2013) Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale. Hydrol Earth Syst Sci 17:2599–2611.  https://doi.org/10.5194/hess-17-2599-2013 Google Scholar
  13. Dippenaar MA, Van Rooy JL (2016) On the cubic law and variably saturated flow through discrete open rough-walled discontinuities. Int J Rock Mech Min Sci 89:200–211.  https://doi.org/10.1016/j.ijrmms.2016.09.011 Google Scholar
  14. Dorn C, Linde N, Le Borgne T, Bour O, de Dreuzy JR (2013) Conditioning of stochastic 3-D fracture networks to hydrological and geophysical data. Adv Water Resour 62(part A):79–89.  https://doi.org/10.1016/j.advwatres.2013.10.005
  15. Fahim MA, Wakao N (1982) Parameter estimation from tracer response measurements. Chem Eng J 25(1):1–8.  https://doi.org/10.1016/0300-9467(82)85016-8 Google Scholar
  16. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619.  https://doi.org/10.1364/JOSAA.1.000612 Google Scholar
  17. Fernandes AJ, Maldaner CH, Negri F, Rouleau A, Wahnfried ID (2016) Aspects of a conceptual groundwater flow model of the Serra Geral basalt aquifer (Sao Paulo, Brazil) from physical and structural geology data. Hydrogeol J 24(5):1199–1212.  https://doi.org/10.1007/s10040-016-1370-6 Google Scholar
  18. Fiori A (2014) Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment. Water Resour Res 50:9148–9161.  https://doi.org/10.1002/2014WR015950 Google Scholar
  19. Fiori A, Becker M (2015) Power law breakthrough curve tailing in a fracture: the role of advection. J Hydrol 525:706–710.  https://doi.org/10.1016/j.jhydrol.2015.04.029 Google Scholar
  20. Frick U, Alexander WR, Baeyens B, Bossart P, Bradbury MH, Buhler C, Eikenberg J, Fierz T, Heer W, Hoehn E, McKinley IG, Smith PA (1992) The radionuclide migration experiment: overview of investigations 1985–1990. https://inis.iaea.org/search/search.aspx?orig_q=RN:23074576. Accessed 4 September 2018
  21. Gastmans D, Hutcheon I, Menegário AA, Chang HK (2016) Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil). J Hydrol 535:598–611.  https://doi.org/10.1016/j.jhydrol.2016.02.016 Google Scholar
  22. Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJGoogle Scholar
  23. Gentier S, Hopkins D, Riss J (2013) Role of fracture geometry in the evolution of flow paths under stress. In: Faybishenko B, Witherspoon PA, Benson SM (ed) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:213–224Google Scholar
  24. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. J Hydrol 377(1–2):80–91.  https://doi.org/10.1016/j.jhydrol.2009.08.003 Google Scholar
  25. Heap MJ, Reuschlé T, Farquharson JI, Baud P (2018) Permeability of volcanic rocks to gas and water. J Volcanol Geotherm Res 354:29–38.  https://doi.org/10.1016/j.volgeores.2018.02.002 Google Scholar
  26. Himmelsbach T, Wendland E (2000) Transport of heavy metals in a fractured porous block experiments and 3D-model. In: Dassargues A (ed) Tracers and modelling in hydrogeology, 1st edn. IAHS, Wallingford, UK, pp 325–331Google Scholar
  27. Hjerne C, Nordqvist R (2014) Relation between mass balance aperture and hydraulic properties from field experiments in fractured rock in Sweden. Hydrogeol J 22:1285–1292.  https://doi.org/10.1007/s10040-014-1132-2 Google Scholar
  28. Keller AA, Roberts PV, Blunt MJ (1999) Effect of fracture aperture variations on the dispersion of contaminants. Water Resour Res 35(1):55–63.  https://doi.org/10.1029/1998WR900041 Google Scholar
  29. Klimczak C, Schultz RA, Parashar R, Reeves DM (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18(4):851–862.  https://doi.org/10.1007/s10040-009-0572-6 Google Scholar
  30. Knudby C, Carrera J (2005) On the relationship between indicators of geostatistical, flow and transport connectivity. Water Resour Res 20:405–421.  https://doi.org/10.1016/j.advwatres.2004.09.001 Google Scholar
  31. Larsson M, Odén M, Niemi A, Neretnieks I, Tsang CF (2013) A new approach to account for fracture aperture variability when modeling solute transport in fracture networks. Water Resour Res 49:2241–2252.  https://doi.org/10.1002/wrcr.20130 Google Scholar
  32. Masciopinto C, La Mantia R, Chrysikopoulos CV (2008) Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resour Res 44(W01404):1–18.  https://doi.org/10.1029/2006WR005643 Google Scholar
  33. Min KB, Rutqvist J, Tsang CF, Jinga L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41(7):1191–1210.  https://doi.org/10.1016/j.ijrmms.2004.05.005 Google Scholar
  34. Moreno L, Tsang YW, Tsang CF, Hale FV, Neretnieks I (1988) Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour Res 24(12):2033–2048.  https://doi.org/10.1029/WR024i012p02033 Google Scholar
  35. Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fracture rocks. Hydrogeol J 13(1):124–147.  https://doi.org/10.1007/s10040-004-0397-2 Google Scholar
  36. Nowamooz A, Radilla G, Fourar M, Berkowitz B (2013) Non-fickian transport in transparent replicas of rough-walled rock fractures. Transp Porous Media 98(3):651–682.  https://doi.org/10.1007/s11242-013-0165-7 Google Scholar
  37. Odén M, Niemi A, Tsang CF, Öhman J (2008) Regional channelized transport in fractured media with matrix diffusion and linear sorption. Water Resour Res 44(W02421):1–16.  https://doi.org/10.1029/2006WR005632 Google Scholar
  38. Ritter A, Muñoz-Carpena R (2013) Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480(14):33–45.  https://doi.org/10.1016/j.jhydrol.2012.12.004 Google Scholar
  39. Rodrigues SN, Dickson SE, Qu J (2013) Colloid retention mechanisms in single, saturated, variable-aperture fractures. Water Res 47(1):31–42.  https://doi.org/10.1016/j.watres.2012.08.033 Google Scholar
  40. Sisavath S, Al-Yaaruby A, Pain C, Zimmerman RW (2003) A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl Geophys 160(5–6):1009–1022.  https://doi.org/10.1007/PL00012558 Google Scholar
  41. Skagius K, Neretnieks I (1986) Porosities and diffusivities of some nonsorbing species in crystalline rocks. Water Resour Res 22(3):389–398.  https://doi.org/10.1029/WR022i003p00389 Google Scholar
  42. Snow DT (1965) A parallel plate model of fractured permeable media. PhD Thesis, Univ. of California, Berkeley, CAGoogle Scholar
  43. Tsang CF, Neretnieks I, Tsang Y (2015) Hydrologic issues associated with nuclear waste repositories. Water Resour Res 51:6923–6972.  https://doi.org/10.1002/2015WR017641 Google Scholar
  44. Tsang YW (1992) Usage of “equivalent apertures” for rock fractures as derived from hydraulic and tracer tests. Water Resour Res 28(5):1451–1455.  https://doi.org/10.1029/92WR00361 Google Scholar
  45. Tsang YW, Tsang CF (1987) Channel model of flow through fractured media. Water Resour Res 23(3):467–479.  https://doi.org/10.1029/WR023i003p00467 Google Scholar
  46. Van Genuchten MT (1981) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production, first-order decay. J Hydrol 49(3–4):213–233.  https://doi.org/10.1016/0022-1694(81)90214-6 Google Scholar
  47. Vaz CMP, de Maria IC, Lasso PO, Tuller M (2011) Evaluation of an advanced benchtop micro-computed tomography system for quantifying porosities and pore-size distributions of two Brazilian oxisols. Soil Sci Soc Am J 75(3):832–841.  https://doi.org/10.2136/sssaj2010.0245 Google Scholar
  48. Vilarassa V, Koyama T, Neretnieks I, Jing L (2010) Shear-induced flow channels in a single rock fracture and their effect on solute transport. Transp Porous Media 87(2):503–523.  https://doi.org/10.1007/s11242-010-9698-1 Google Scholar
  49. Voorn M, Exner U, Rath A (2013) Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data. Comput Geosci 57:44–53.  https://doi.org/10.1016/j.cageo.2013.03.006 Google Scholar
  50. Wang L, Cardenas MB, Slottke DT, Ketcham RA, Sharp JM (2015) Modification of the local cubic law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour Res 51:2064–2080.  https://doi.org/10.1002/2014WR015815 Google Scholar
  51. Watanabe N, Hirano N, Tsuchiya N (2008) Determination of aperture structure and fluid flow in a rock fracture by high-resolution numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resour Res 44(W06412):1–11.  https://doi.org/10.1029/2006WR005411 Google Scholar
  52. Wendland E, Himmelsbach T (2002) Transport simulation with stochastic aperture for a single fracture: a comparison with a laboratory experiment. Adv Water Resour 25(1):19–32.  https://doi.org/10.1016/S0309-1708(01)00027-6 Google Scholar
  53. Willmann M, Lanyon GW, Marschall P, Kinzelbach W (2013) A new stochastic particle tracking approach for fractured sedimentary formations. Water Resour Res 49:352–359.  https://doi.org/10.1029/2012WR012191 Google Scholar
  54. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82.  https://doi.org/10.3354/cr030079 Google Scholar
  55. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094.  https://doi.org/10.1002/joc.2419 Google Scholar
  56. Zheng Q, Dickson SE, Guo Y (2008) On the appropriate “equivalent aperture” for the description of solute transport in single fractures: laboratory-scale experiments. Water Resour Res 44(W04502):1–9.  https://doi.org/10.1029/2007WR005970 Google Scholar
  57. Zimmerman RW, Yeo IW (2000) Fluid flow in rock fractures: from the Navier-Stokes equations to the cubic law. In: Faybishenko B, Witherspoon PA, Benson SM (ed) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:213–224Google Scholar
  58. Zvikelsky O, Weisbrod N (2006) Impact of particle size on colloid transport in discrete fractures. Water Resour Res 42(W12S08):1–12.  https://doi.org/10.1029/2006WR004873 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  • Murilo Lucas
    • 1
    Email author
  • Gabriel Dias Cantareira
    • 2
  • Edson Wendland
    • 3
  1. 1.Department of Civil EngineeringFederal University of Technology – ParanáPato BrancoBrazil
  2. 2.Institute of Mathematics and Computer SciencesUniversity of São PauloSão CarlosBrazil
  3. 3.Department of Hydraulics and Sanitary EngineeringUniversity of São PauloSão CarlosBrazil

Personalised recommendations