Advertisement

Contrasting NO3-N concentration patterns at two karst springs in Iowa (USA): insights on aquifer nitrogen storage and delivery

  • Keith E. SchillingEmail author
  • Christopher S. Jones
  • Ryan J. Clark
  • Robert D. Libra
  • Xiuyu Liang
  • You-Kuan Zhang
Report

Abstract

Evaluating the patterns of NO3-N concentrations at karst springs can be used to infer hydrologic processes and nutrient dynamics in karst aquifers. In this study, NO3-N concentrations observed at two karst springs in northeast Iowa (USA) were evaluated for a 2-year period using high-frequency sensors. Despite similar watershed land use dominated by intense row cropping of corn and soybean production (>70%), NO3-N concentrations and temporal patterns were very different between the two springs. At the Manchester spring, NO3-N stored in overburden materials above the karst-enhanced Silurian-age bedrock provides a continuing source of NO3-N to the spring. Rainfall events mobilize the stored NO3-N and concentrations increase. At Big Spring, the karst system is overlain by a thin layer of sediments and the bedrock is dominated by sinkholes and losing streams. Rainfall events dilute the spring NO3-N concentrations which rapidly decreased during events before rebounding to previous levels. Spectral analyses revealed that concentrations at both springs were a fractal process, with the scaling exponent at Manchester (2.0) considerably larger than that measured at Big Spring (1.4), indicating a higher degree of autocorrelation in NO3-N concentrations at Manchester, consistent with the conceptual model. Overall, results argue for greater use of high-frequency NO3-N monitoring at karst springs to better assess short- and long-term variations in NO3-N concentrations and to unravel karst processes.

Keywords

Nitrate Karst Agriculture USA 

Signatures contrastées en NO3-N dans deux sources karstiques de l’Iowa (USA): perspectives Sur le stockage et la libération d’azote dans l’aquifère

Résumé

L’évaluation des signatures en NO3-N dans des sources karstiques peut être utilisée pour déduire des processus hydrologiques et la dynamique des nutriments au sein des aquifères karstiques. Dans cette étude, les concentrations en NO3-N ont été mesurées sur deux sources karstiques du nord-est de l’Iowa (USA) sur une période de deux ans en utilisant des capteurs à haute-fréquence d’acquisition. Bien que les bassins d’alimentation respectifs montrent des occupations du sol, similaires dominées par la culture intensive du maïs et du soja (>70%), les concentrations en NO3-N et les évolutions temporelles sont très différentes entre les deux sources. A la source Manchester, le NO3-N stocké dans les matériaux de couverture au-dessus des formations karstifiées d’âge Silurien constitue une source continue de NO3-N vers l’exutoire. Les épisodes pluvieux mobilisent le NO3-N stocké et les concentrations augmentent. A la source Big Spring, la formation karstique est. recouverte par une fine couche de sédiments et présente de nombreuses dolines et pertes le long de cours d’eau. Les épisodes pluvieux diluent les concentrations en NO3-N à l’exutoire avec une diminution rapide des concentrations pendant l’épisode, suivie d’une remontée aux concentrations pré-évènement. Les analyses spectrales ont montré que les concentrations aux deux sources suivent un comportement fractal, avec un exposant de mise à l’échelle largement plus élevé à Manchester (2.0) qu’à Big Spring (1.4), ce qui indique un plus grand degré d’autocorrélation des concentrations en NO3-N à Manchester, ce qui est. en accord avec le modèle conceptuel. Dans l’ensemble, les résultats plaident en faveur d’une utilisation plus répandue de suivis à haute fréquence d’acquisition des NO3-N aux sources karstiques afin de mieux évaluer les variations à court et long terme des concentrations en NO3-N et éclaircir les processus karstiques en jeu.

Contraste de los patrones de concentración de NO3-N en dos manantiales cársticos de Iowa (EEUU): conocimientos acerca del almacenamiento y suministro de nitrógeno en el acuífero

Resumen

La evaluación de los patrones de concentración de NO3-N en los manantiales cársticos puede utilizarse para inferir los procesos hidrológicos y la dinámica de los nutrientes en los acuíferos cársticos. En este estudio, las concentraciones de NO3-N observadas en dos manantiales cársticos en el noreste de Iowa (EEUU) fueron evaluadas durante un período de dos años usando sensores de alta frecuencia. A pesar del uso similar de las tierras de las cuencas hidrográficas, dominadas por el cultivo intensivo de maíz y soja (> 70%), las concentraciones de NO3-N y los patrones temporales fueron muy diferentes entre los dos manantiales. En el manantial de Manchester, el NO3-N almacenado en materiales suprayacentes al basamento cárstico de edad silúrica proporciona una fuente continua de NO3-N al manantial. Los eventos de lluvia movilizan el NO3-N almacenado y las concentraciones aumentan. En Big Spring, el sistema cárstico está cubierto por una fina capa de sedimentos y el basamento está dominado por sumideros y arroyos perdidos. Los eventos de lluvia diluyen las concentraciones de NO3-N de los manantiales, las cuales disminuyen rápidamente durante los eventos antes de recuperarse a los niveles anteriores. Los análisis espectrales revelaron que las concentraciones en ambos manantiales eran un proceso fractal, con el exponente de escala en Manchester (2.0) considerablemente mayor que el medido en Big Spring (1.4), indicando un mayor grado de autocorrelación en concentraciones de NO3-N en Manchester, consistente con el modelo conceptual. En general, los resultados abogan por un mayor uso del monitoreo de alta frecuencia de NO3-N en los manantiales cársticos para evaluar mejor las variaciones a corto y largo plazo en las concentraciones de NO3-N y para desentrañar los procesos cársticos.

(美国)爱荷华州岩溶泉NO3-N含量模式的对比:对含水层氮存储和传递的认识

摘要

评估岩溶泉的NO3-N含量模式可用来推断岩溶含水层的水文过程和营养物动力学。在本研究中,评估了采用高频传感器两年时间内在(美国)爱荷华州东北部两个岩溶泉观测到的NO3-N含量。尽管类似的流域土地利用主要是密集的玉米和大豆连作生产(>70%),但两个泉之间的NO3-N含量和时间模式完全不同。在Manchester泉,储存在岩溶增强的志留纪基岩之上表土物质中的NO3-N为泉提供了持续的NO3-N来源。降雨事件使储存的NO3-N活跃起来,含量增加。在Big泉,岩溶系统上覆着薄层沉积物,基岩上主要有落水洞和渗失河。降雨事件稀释了泉的NO3-N含量,NO3-N含量在恢复到原来水平前的降雨事件期间迅速降低。光谱分析结果揭示,两个泉的含量是一个不规则过程,Manchester的比例指数(2.0)大大高于Big泉的比例指数(1.4),表明,在Manchester泉NO3-N含量自相关程度较高,与概念模型的结果一致。总的说来,结果支持在岩溶泉大力开展高频NO3-N监测,以更好地评价NO3-N含量的短期和长期变化,以及阐明岩溶过程。

Contrastando os padrões de concentração de NO3-N em duas nascentes cársticas em Iowa (EUA): intuições sobre armazenamento e entrega de nitrogênio do aquífero

Resumo

A avaliação dos padrões de concentrações de NO3-N em nascentes cársticas pode ser usada para inferir processos hidrológicos e a dinâmica de nutrientes em aquíferos cársticos. Neste estudo, as concentrações de NO3-N observadas em duas nascentes cársticas no nordeste de Iowa (EUA) foram avaliadas por um período de dois anos usando sensores de alta frequência. Apesar do uso similar da terra em bacias hidrográficas dominadas por intenso plantio de milho e produção de soja (> 70%), as concentrações de NO3-N e os padrões temporais foram muito diferentes entre as duas nascentes. Na nascente Manchester, o NO3-N armazenado em materiais de sobrecarga acima do leito rochoso cárstico de idade Siluriana fornece uma fonte contínua de NO3-N para a nascente. Eventos de chuva mobilizam o NO3-N armazenado e as concentrações aumentam. Na nascente Big, o sistema cárstico é coberto por uma fina camada de sedimentos e a rocha é dominada por sumidouros e córregos afluentes. Eventos de chuva diluem as concentrações de NO3-N das nascentes que rapidamente diminuíram durante esses eventos antes de se recuperarem para níveis anteriores. Análises espectrais revelaram que as concentrações em ambas as nascentes foram processos fractais, com o expoente de escala na nascente Manchester (2.0) consideravelmente maior do que o medido na nascente Big (1.4), indicando um maior grau de autocorrelação das concentrações de NO3-N na Manchester, consistente com o modelo conceitual. No geral, os resultados sugerem uma maior utilização do monitoramento de alta frequência do NO3-N em nascentes cársticas para melhor avaliar as variações de curto e longo prazos nas concentrações de NO3-N e para desvendar processos cársticos.

Notes

Acknowledgements

Phil Kerr drafted the conceptual model. Reviews from Calvin Alexander and two anonymous reviewers helped to improve the manuscript.

Funding information

Funding for deployment and maintenance of the N sensors was provided, in part, by the Iowa Nutrient Research Center and the Iowa Department of Natural Resources.

References

  1. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  2. Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. Environ Sci Technol 44:4988–4997CrossRefGoogle Scholar
  3. Chambers PA, McGoldrick DJ, Brua RB, Vis C, Culp JM, Benoy GA (2012) Development of environmental thresholds for nitrogen and phosphorus in streams. J Environ Qual 41:7–20CrossRefGoogle Scholar
  4. David MB, Drinkwater LE, McIsaac GF (2010) Sources of nitrate yields in the Mississippi River basin. J Environ Qual 39:1657–1667CrossRefGoogle Scholar
  5. Dodds WK, Welch EB (2000) Establishing nutrient criteria in streams. J N Am Benthol Soc 19:186–196CrossRefGoogle Scholar
  6. Feng Z, Schilling KE, Chan KS (2013) Dynamic regression modeling of daily nitrate-nitrogen concentrations in a large agricultural watershed. Environ Monit Assess 185:4605–4617CrossRefGoogle Scholar
  7. Guan K, Thompson SE, Harman CJ, Basu NB, Rao PSC, Sivapalan M, Packman AI, Kalita PK (2011) Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained midwestern watershed. Water Resour Res 47(10):W00J02.  https://doi.org/10.1029/2010WR009997
  8. Hallberg GR (1983) Hydrogeology, water quality, and land management in the Big Spring basin, Clayton County, Iowa. http://publications.iowa.gov/26425/. Accessed January 2019
  9. Howden NJK, Burt TP, Mathias SA, Worrall F, Whelan MJ (2011) Modelling long-term diffuse nitrate pollution at the catchment-scale: data, parameter and epistemic uncertainty. J Hydrol 403:337–351CrossRefGoogle Scholar
  10. Huebsch M, Horan B, Blum P, Richards KG, Grant J, Fenton O. (2013) Impact of agronomic practices of an intensive dairy farm on nitrogen concentrations in a karst aquifer in Ireland. Agric Ecosyst Environ 179:187–199Google Scholar
  11. Huebsch M, Fenton O, Horan B, Hennessy D, Richards KG, Jordan P, Goldscheider N, Butscher C, Blum P (2014) Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrol Earth Syst Sci 18:4423–4435CrossRefGoogle Scholar
  12. IIHR Hydrosicence and Engineering (IIHR) (2019) Iowa water quality information system, http://iwqis.iowawis.org/. Accessed 11 January 2019
  13. Ikenberry CD, Soupir ML, Schilling KE, Jones CS, Seeman A (2014) Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins. J Environ Qual 43:2024–2033CrossRefGoogle Scholar
  14. Iowa Environmental Mesonet (2019) IEM daily feature. IEM, Iowa City, IA. https://mesonet.agron.iastate.edu/. Accessed January 2019
  15. Iowa Public Health Association (2010) Nitrate in your drinking water: what you need to know. https://www.iowapha.org/resources/Pictures/Nitrates%20in%20Water%20-%2003.31.17.pdf. Accessed 10 December 2018
  16. Jha MK, Wolter CF, Schilling KE, Gassman PW (2010) Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa. J Environ Qual 39:1317–1327CrossRefGoogle Scholar
  17. Jones CS, Davis CA, Drake CW, Schilling KE, Debionne SH, Gilles DW, Demir I, Weber LJ (2018a) Iowa statewide stream nitrate load calculated using in situ sensor network. J Am Water Res Assoc 54:471–486CrossRefGoogle Scholar
  18. Jones CS, Nielsen JK, Schilling KE, Weber LJ (2018b) Iowa stream nitrate and the Gulf of Mexico. PLoS One 13(4):e0195930CrossRefGoogle Scholar
  19. Kačaroğlu F (1999) Review of groundwater pollution and protection in karst areas. Water Air Soil Pollut 113:337–356CrossRefGoogle Scholar
  20. Katz BG (2004) Sources of nitrate contamination and age of water in large karstic springs of Florida. Environ Geol 46:689–706CrossRefGoogle Scholar
  21. Kaushal SS, Groffman PM, Band LE, Elliott EM, Shields CA, Kendall C (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232CrossRefGoogle Scholar
  22. Kirchner JW, Neal C (2013) Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc Natl Acad Sci 110:12213–12218CrossRefGoogle Scholar
  23. Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524CrossRefGoogle Scholar
  24. Li ZW, Zhang YK (2007) Quantifying fractal dynamics of groundwater systems with detrended fluctuation analysis. J Hydrol 336:139–146CrossRefGoogle Scholar
  25. Liang XY, Zhang YK (2013) Temporal and spatial variation and scaling of groundwater levels in a bounded unconfined aquifer. J Hydrol 479:139–145CrossRefGoogle Scholar
  26. Liang XY, Zhang YK (2015) Analyses of uncertainties and scaling of groundwater level fluctuations. Hydrol Earth Syst Sci 19:2971–2979CrossRefGoogle Scholar
  27. Libra RD, Wolter CF, Langel RJ (2004) Nitrogen and phosphorus budgets for Iowa and Iowa watersheds. Iowa Geological Survey technical report 47, IGS, Iowa City, IAGoogle Scholar
  28. Lomb NR (1976) Least-squares frequency-analysis of unequally spaced data. Ap Space Sci 39:447–462CrossRefGoogle Scholar
  29. Mahler BJ, Valdes D, Musgrove M, Massei N (2008) Nutrient dynamics as indicators of karst processes: comparison of the chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA). J Contam Hydrol 98:36–49CrossRefGoogle Scholar
  30. Majone B, Bellin A, Borsato A (2004) Runoff generation in karst catchments: multifractal analysis. J Hydrol 294:176–195CrossRefGoogle Scholar
  31. Mandelbr BW, Vanness JW (1968) Fractional Brownian motions fractional noises and applications. SIAM Rev 10:422CrossRefGoogle Scholar
  32. McLellan E, Schilling K, Robertson D (2015) Reducing fertilizer-nitrogen losses from Rowcrop landscapes: insights and implications from a spatially explicit watershed model. J Am Water Resour Assoc 51:1003–1019CrossRefGoogle Scholar
  33. Mellander PE, Jordan P, Melland AR, Murphy PN, Wall DP, Mechan S, Meehan R, Kelly C, Shine O, Shortle G (2013) Quantification of phosphorus transport from a karstic agricultural watershed to emerging spring water. Environ Sci Technol 47:6111–6119CrossRefGoogle Scholar
  34. Musgrove M, Katz BG, Fahlquist LS, Crandall CA, Lindgren RJ (2014) Factors affecting public-supply well vulnerability in two karst aquifers. Groundwater 52:63–75CrossRefGoogle Scholar
  35. Nolan BT, Ruddy BC, Hitt KJ, Helsel DR (1997) Risk of nitrate in groundwaters of the United States a national perspective. Environ Sci Technol 31:2229–2236CrossRefGoogle Scholar
  36. Opsahl SP, Musgrove M, Slattery RN (2017) New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements. J Hydrol 546:179–188CrossRefGoogle Scholar
  37. Panno SV, Krapac IG, Weibel CP, Bade JD (1996) Groundwater contamination in karst terrain of southwestern Illinois. Environ Geol 151. Illinois State Geol Survey, ChampaignGoogle Scholar
  38. Panno SV, Hackley KC, Hwang HH, Kelly WR (2001) Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chem Geol 179:113–128CrossRefGoogle Scholar
  39. Pellerin BA, Bergamaschi BA, Downing BD, Saraceno JF, Garrett JD, Olsen LD (2013) Optical techniques for the determination of nitrate in environmental waters: guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting. US Geol Serv Tech Methods TM1-D5Google Scholar
  40. Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:7–48CrossRefGoogle Scholar
  41. Pu J, Yuan D, He Q, Wang Z, Hu Z, Gou P (2011) High-resolution monitoring of nitrate variations in a typical subterranean karst stream, Chongqing, China. Environ Earth Sci 64:1985–1993CrossRefGoogle Scholar
  42. Rowden RD, Liu H, Libra RD (2001) Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA. Hydrogeol J 9:487–497CrossRefGoogle Scholar
  43. Rozemeijer JC, Van der Velde Y, Van Geer FC, Bierkens MFP, Broers HP (2010) Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality. Environ Pollut 158:3571–3579CrossRefGoogle Scholar
  44. Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Groundwater 34:23–30CrossRefGoogle Scholar
  45. Scargle JD (1982) Studies in astronomical time-series analysis 2. Statistical aspects of spectral-analysis of unevenly spaced data. Astrophys J 263:835–853CrossRefGoogle Scholar
  46. Schilling K (2017) How much do golf courses contribute to Gulf of Mexico hypoxia? Golf Course Manag 17:76–81Google Scholar
  47. Schilling KE, Libra RD (2000) The relationship of nitrate concentrations in streams to row crop land use in Iowa. J Environ Qual 29:1846–1851CrossRefGoogle Scholar
  48. Schilling KE, Wolter CF (2009) Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environ Manag 44:671–682CrossRefGoogle Scholar
  49. Schilling KE, Zhang YK (2012) Temporal scaling of groundwater level fluctuations near a stream. Ground Water 50:59–67CrossRefGoogle Scholar
  50. Schilling KE, Streeter MT, Quade D, Skopec M (2016) Groundwater loading of nitrate-nitrogen and phosphorus from watershed source areas to an Iowa great Lake. J Great Lakes Res 42:588–598CrossRefGoogle Scholar
  51. Tomer MD, Meek DW, Jaynes DB, Hatfield JL (2003) Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa. J Environ Qual 32:642–653CrossRefGoogle Scholar
  52. Toran L, White WB (2005) Variation in nitrate and calcium as indicators of recharge pathways in Nolte spring, PA. Environ Geol 48:854–860CrossRefGoogle Scholar
  53. Witzke BJ, Bounk MJ, Ludvigson GA, Gonzalez LA (1992) Silurian stratigraphy and carbonate mound facies of Eastern Iowa: field trip guidebook to Silurian exposures in Jones and Linn counties. Iowa Dept. Natural Resources Geological Survey Bureau, Des Moines, IAGoogle Scholar
  54. Wong CI, Mahler BJ, Musgrove M, Banner JL (2012) Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions. J Hydrol 468:159–172CrossRefGoogle Scholar
  55. Yang C, Zhang YK, Liang X (2018) Analysis of temporal variation and scaling of hydrological variables based on a numerical model of the Sagehen Creek watershed. Stoch Env Res Risk A 32:357–368CrossRefGoogle Scholar
  56. Zhang YK, Li ZW (2005) Temporal scaling of hydraulic head fluctuations: nonstationary spectral analyses and numerical simulations. Water Resour Res 41(7):W07031.  https://doi.org/10.1029/2004WR003797
  57. Zhang YK, Li ZW (2006) Effect of temporally correlated recharge on fluctuations of groundwater levels. Water Resour Res 42(10):W10412.  https://doi.org/10.1029/2005WR004828
  58. Zhang YK, Schilling K (2004) Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge. Water Resour Res 40(3):W10412.  https://doi.org/10.1029/2005WR004828
  59. Zhang YK, Schilling K (2005) Temporal variations and scaling of streamflow and baseflow and their nitrate-nitrogen concentrations and loads. Adv Water Resour 28(7):701–710CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Keith E. Schilling
    • 1
    Email author
  • Christopher S. Jones
    • 2
  • Ryan J. Clark
    • 1
  • Robert D. Libra
    • 1
  • Xiuyu Liang
    • 3
    • 4
    • 5
  • You-Kuan Zhang
    • 3
    • 4
    • 5
    • 6
  1. 1.Iowa Geological SurveyUniversity of IowaIowa CityUSA
  2. 2.IIHR Hydroscience & EngineeringUniversity of IowaIowa CityUSA
  3. 3.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution ControlSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  4. 4.School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  5. 5.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution ControlSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  6. 6.Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations