Advertisement

Using water temperature series and hydraulic heads to quantify hyporheic exchange in the riparian zone

  • Jie RenEmail author
  • Wenbing Zhang
  • Jie Yang
  • Yinjun Zhou
Paper
  • 19 Downloads

Abstract

Surface-water/groundwater exchange through the evaluation of riparian-zone temperature data has attracted increasing attention in recent years. The Fox Ditch Canal, Nevada, USA, was chosen for this study on seasonal variations of riparian-zone water exchange. Groundwater temperature and hydraulic head real-time monitoring data were collected from March to November 2012. A calibrated hydro-thermal coupling model was used to characterize the riparian-zone temporal and spatial temperature distribution, thereby providing a standard against which the performances of four analytical solution models for calculated riparian-zone vertical seepage velocity could be assessed. The results indicated that the proposed model provided a simulation that was able to represent dynamic changes in riparian-zone soil temperature. Although small variations in patterns and magnitudes of riparian-zone water exchange were evident at a daily scale, they varied significantly over a seasonal scale. Comparison of the results of the four analytical solutions and numerical computation found that the Hatch solution by the amplitude method provided the highest accuracy for calculating groundwater velocity in this area (2.47 × 10−6 to 3.15 × 10−6 m/s). Global sensitivity analysis of hydro-thermal coupling model parameters showed that porosity had the most significant impact on temperature in the model.

Keywords

Hyporheic exchange Riparian zone Analytical solutions Vertical seepage velocity Groundwater/surface-water relations 

Utilisation des chroniques de température de l’eau et des charges hydrauliques pour quantifier les échanges hyporhéïques dans la zone riparienne

Résumé

L’échange eau de surface/eau souterraine, vu à travers l’évaluation des données de température de la zone riparienne, a suscité une attention grandissante ces dernières années. Le Fossé Canal de Fox, Nevada, Etats-Unis d’Amérique, a été choisi pour cette étude sur les variations saisonnières des échanges d’eau dans la zone riparienne. Les données issues du suivi en temps réel de la température de l’eau souterraine et de la charge hydraulique ont été recueillies de Mars à Novembre 2012. Un modèle couplé hydro-thermique calibré a été utilisé pour caractériser la distribution temporelle et spatiale de la température dans la zone riparienne, fournissant ainsi une référence par rapport à laquelle les performances de quatre modèles analytiques quant à la vitesse de percolation verticale calculée dans la zone ripuaire pourraient être évaluées. Les résultats ont indiqué que le modèle proposé fournissait une simulation qui permettait de représenter les changements de dynamique de la température du sol dans la zone riparienne. Bien que de petites variations dans les signatures et les amplitudes de l’échange de l’eau dans la zone riparienne soient manifestes à l’échelle de la journée, elles ont varié significativement à l’échelle saisonnière. La comparaison des résultats des quatre solutions analytiques et du calcul numérique a révélé que la solution de Hatch par la méthode de l’amplitude fournissait la plus grande précision pour le calcul de la vitesse de l’eau souterraine dans cette zone (2.47 × 10−6 à 3.15 × 10−6 m/s). L’analyse de la sensibilité de l’ensemble des paramètres du modèle couplé hydrothermique a montré que c’est la porosité qui a l’impact le plus important sur la température dans le modèle.

Uso de series de temperatura del agua y cargas hidráulicas para cuantificar el intercambio hiporreico en la zona ribereña

Resumen

El intercambio aguas superficiales/aguas subterráneas a partir de la evaluación de los datos de temperatura de la zona ribereña ha llamado cada vez más la atención en los últimos años. El Canal Fox Ditch, Nevada, EEUU, fue elegido para este estudio sobre las variaciones estacionales del intercambio de agua de la zona ribereña. La temperatura del agua subterránea y los datos de monitoreo en tiempo real de la carga hidráulica fueron recopilados desde marzo a noviembre de 2012. Se utilizó un modelo de acoplamiento hidrotérmico calibrado para caracterizar la distribución temporal y espacial de la temperatura en la zona ribereña, proporcionando así un estándar con respecto al cual se pudieron evaluar los resultados de cuatro modelos de solución analítica para la velocidad de infiltración vertical calculada en la zona ribereña. Los resultados indicaron que el modelo propuesto proporcionaba una simulación que era capaz de representar cambios dinámicos en la temperatura del suelo de la zona ribereña. Aunque pequeñas variaciones en los patrones y magnitudes del intercambio de agua en la zona ribereña eran evidentes a escala diaria, variaban significativamente a lo largo de una escala estacional. La comparación de los resultados de las cuatro soluciones analíticas y el cálculo numérico reveló que la solución de Hatch por el método de la amplitud proporcionaba la mayor precisión para calcular la velocidad del agua subterránea en esta área (2.47 × 10−6 a 3.15 × 10−6 m/s). El análisis de sensibilidad global de los parámetros del modelo de acoplamiento hidrotérmico mostró que la porosidad tenía el impacto más significativo sobre la temperatura en el modelo.

利用水温序列和水头量化河岸带潜流交换

摘要

通过评估河岸带温度数据获取地表水/地下水交换量, 近年来越来越引起人们的关注。选择美国内华达州福克斯运河研究河岸带水交换量的季节性变化。从2012年3月到11月收集了地下水温度和水头实时监测数据。利用校正过的水热耦合模型描述了河岸带时空温度分布。因此,提出了对计算的河岸带垂直渗流速度四个解析模型性能可以评价的标准。结果表明,提出的模型提供的模拟结果能够表示河岸带土壤温度的动态变化。尽管在每日的尺度上河岸带水交换的模式和幅度变化很小,但季节尺度上的变化非常大。四个解析方法和数值计算的结果对比发现,振幅方法的Hatch解决法在计算本地区地下水速度(2.47 × 10−6 to 3.15 × 10−6 m/s)上精确度最高。水热耦合模型参数的全球灵敏度分析结果显示,模型中孔隙度对温度的影响最大。

Usando séries de temperatura da água e carga hidráulicas para quantificar as trocas nas zonas hiporreica e ripária

Resumo

A troca entre águas superficiais/subterrâneas através da avaliação dos dados de temperatura da zona ripária tem atraído uma atenção crescente nos últimos anos. O Canal Fox Ditch, Nevada, EUA, foi escolhido para este estudo durante as variações sazonais de troca de águas na zona ripária. Os dados de monitoramento em tempo real da temperatura das águas subterrâneas e da carga hidráulica foram coletados de março a novembro de 2012. Um modelo de acoplamento hidrotérmico calibrado foi utilizado para caracterizar a distribuição de temperatura temporal e espacial da zona ripária, fornecendo assim, um padrão no qual o desempenho de quatro modelos analíticos para medição da velocidade de escoamento vertical calculados para a zona ripária pode ser avaliado. Os resultados indicaram que, o modelo proposto forneceu uma simulação capaz de representar mudanças nas dinâmicas da temperatura do solo na zona ripária. Embora pequenas variações nos padrões e magnitudes da troca de águas na zona ribeirinha fossem evidentes em uma escala diária, elas variaram significativamente em uma escala sazonal. A comparação dos resultados das quatro soluções analíticas e de computação numérica constatou que, a solução de Hatch pelo método de amplitude, forneceu a maior precisão para o cálculo da velocidade da água subterrânea nesta área (2.47 × 10−6 a 3.15 × 10−6 m/s). A análise de sensibilidade global dos parâmetros do modelo de acoplamento hidrotérmico mostrou que, a porosidade teve o impacto mais significativo na temperatura do modelo.

Notes

Acknowledgements

The author is grateful to the US Geological Survey of Reston for sharing data required for this study. We also wish to thank the reviewers for their useful comments and valuable remarks, which significantly improved our manuscript.

Funding information

Funding support for this study was provided by National Natural Science Foundation of China (Grant No. 51679194).

References

  1. Anderson MP (2005) Heat as a ground water tracer. Groundwater 43(6):951–968.  https://doi.org/10.1111/j.1745-6584.2005.00052.x Google Scholar
  2. Arora B, Spycher NF, Steefel CI, Molin S, Bill M, Conrad ME, Dong WM, Faybishenko B, Tokunaga TK, Wan JM, Williams KH, Yabusaki SB (2016) Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127(2–3):367–396.  https://doi.org/10.1007/s10533-016-0186-8 Google Scholar
  3. Boano F, Camporeale C, Revelli R, Ridolfi L (2006) Sinuosity-driven hyporheic exchange in meandering rivers. Geophys Res Lett 33(18):L18406.  https://doi.org/10.1029/2006gl027630 Google Scholar
  4. Campolongo F, Tarantola S, Saltelli A (1999) Tackling quantitatively large dimensionality problems. Comput Phys Commun 117(1–2):75–85.  https://doi.org/10.1016/S0010-4655(98)00165-9 Google Scholar
  5. Cardenas MB (2007) Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: residence time distribution analysis of Tóth flow. Geophys Res Lett 34(5):L05403.  https://doi.org/10.1029/2006gl029126 Google Scholar
  6. Cardenas MB (2009) A model for lateral hyporheic flow based on valley slope and channel sinuosity. Water Resour Res 45(1):W01501.  https://doi.org/10.1029/2008wr007442 Google Scholar
  7. Chen IT, Chang LC, Chang FJ (2017) Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. J Hydrol 556:131–142.  https://doi.org/10.1016/j.jhydrol.2017.10.015 Google Scholar
  8. Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44(4):W00D10.  https://doi.org/10.1029/2008wr006996 Google Scholar
  9. Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients, I: theory. J Chem Phys 59(8):3873–3878.  https://doi.org/10.1063/1.1680571 Google Scholar
  10. Dwivedi D, Steefel CI, Arora B, Bisht G (2017) Impact of intra-meander hyporheic flow on nitrogen cycling. Procedia Earth Planet Sci 17:404–407.  https://doi.org/10.1016/j.proeps.2016.12.102 Google Scholar
  11. Dwivedi D, Steefel CI, Arora B, Newcomer M, Moulton JD, Dafflon B, Faybishenko B, Fox P, Nico P, Spycher N, Carroll R, Williams K (2018a) Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River Mountainous Watershed, Colorado. Water Resour Res 54:8456–8477.  https://doi.org/10.1029/2018wr023377 Google Scholar
  12. Dwivedi D, Arora B, Steefel CI, Dafflon B, Versteeg R (2018b) Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour Res 54(1):205–222.  https://doi.org/10.1002/2017wr022346 Google Scholar
  13. Edwardson KJ, Bowden WB, Dahm C, Morrice J (2003) The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska. Adv Water Resour 26(9):907–923.  https://doi.org/10.1016/S0309-1708(03)00078-2 Google Scholar
  14. Engelhardt I, Piepenbrink M, Trauth N, Stadler S, Kludt C, Schulz M, Schueth C, Ternes TA (2011) Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. J Hydrol 400(1–2):255–266.  https://doi.org/10.1016/j.jhydrol.2011.01.033 Google Scholar
  15. Engelhardt I, Prommer H, Moore C, Schulz M, Schüth C, Ternes TA (2013) Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone. Water Resour Res 49(1):426–440.  https://doi.org/10.1029/2012wr012604 Google Scholar
  16. Florides G, Kalogirou S (2005) Annual ground temperature measurements at various depths. 8th REHVA World Congress Clima, October 9–12, 2005, Lausanne, Switzerland, pp 1–6Google Scholar
  17. Fox A, Boano F, Arnon S (2014) Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resour Res 50(3):1895–1907.  https://doi.org/10.1002/2013wr014668 Google Scholar
  18. Fox A, Laube G, Schmidt C, Fleckenstein JH, Arnon S (2016) The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resour Res 52(9):7460–7477.  https://doi.org/10.1002/2016wr018677 Google Scholar
  19. Gardner WR, Hillel D, Benyamini Y (1970) Post-irrigation movement of soil water, 1: Redistribution. Water Resour Res 6(3):851–861.  https://doi.org/10.1029/wr006i003p00851 Google Scholar
  20. Gerecht KE, Cardenas MB, Guswa AJ, Sawyer AH, Nowinski JD, Swanson TE (2011) Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resour Res 47(3):W03524.  https://doi.org/10.1029/2010wr009794 Google Scholar
  21. Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420–421:142–158.  https://doi.org/10.1016/j.jhydrol.2011.11.053 Google Scholar
  22. Goto S, Yamano M, Kinoshita M (2005) Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. J Geophys Res 110(B1):B01106.  https://doi.org/10.1029/2004jb003419 Google Scholar
  23. Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42(10):W10410.  https://doi.org/10.1029/2005wr004787 Google Scholar
  24. Healy RW, Ronan AD (1996) Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media; modification of the US Geological Survey’s computer program VS2DT. US Geol Surv Water Resour Invest Rep 96-4230Google Scholar
  25. Hester ET, Guth CR, Scott DT, Jones CN (2016) Vertical surface water-groundwater exchange processes within a headwater floodplain induced by experimental floods. Hydrol Process 30(21):3770–3787.  https://doi.org/10.1002/hyp.10884 Google Scholar
  26. Hoang L, Griensven AV, Mynett A (2017) Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environ Model Softw 93:163–179.  https://doi.org/10.1016/j.envsoft.2017.03.017 Google Scholar
  27. Huang P, Chui TFM (2018) Empirical equations to predict the characteristics of hyporheic exchange in a pool-riffle sequence. Groundwater 56:947–958.  https://doi.org/10.1111/gwat.12641 Google Scholar
  28. Ibrakhimov M, Awan UK, George B, Liaqat UW (2018) Understanding surface water-groundwater interactions for managing large irrigation schemes in the multi-country Fergana Valley, Central Asia. Agric Water Manag 201:99–106.  https://doi.org/10.1016/j.agwat.2018.01.016 Google Scholar
  29. Irvine DJ, Lautz LK, Briggs MA, Gordon RP, Mckenzie JM (2015) Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. J Hydrol 531:728–737.  https://doi.org/10.1016/j.jhydrol.2015.10.054 Google Scholar
  30. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10(6):873–887.  https://doi.org/10.5194/hess-10-873-2006 Google Scholar
  31. Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336(1–2):1–16.  https://doi.org/10.1016/j.jhydrol.2006.12.003 Google Scholar
  32. Kiel BA, Cardenas MB (2014) Lateral hyporheic exchange throughout the Mississippi River network. Nat Geosci 7(6):413–417.  https://doi.org/10.1038/ngeo2157 Google Scholar
  33. Kinal J, Stoneman GL (2012) Disconnection of groundwater from surface water causes a fundamental change in hydrology in a forested catchment in South-Western Australia. J Hydrol 472-473:14–24.  https://doi.org/10.1016/j.jhydrol.2012.09.013 Google Scholar
  34. Kipp KL (1987) HST3D: a computer code for simulation of heat and solution transport in three-dimensional groundwater flow systems. US Geol Surv Water Resour Invest Rep 86-4095Google Scholar
  35. Lautz LK (2012) Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records. J Hydrol 464–465:199–215.  https://doi.org/10.1016/j.jhydrol.2012.07.006 Google Scholar
  36. Lee JY, Lim HS, Yoon HI, Park Y (2013) Stream water and groundwater interaction revealed by temperature monitoring in agricultural areas. Water 5(4):1677–1698.  https://doi.org/10.3390/w5041677 Google Scholar
  37. Lemke D, Liao ZJ, Wöhling T, Osenbrück K, Cirpka OA (2013) Concurrent conservative and reactive tracer tests in a stream undergoing hyporheic exchange. Water Resour Res 49(5):3024–3037.  https://doi.org/10.1002/wrcr.20277 Google Scholar
  38. Liao ZJ, Lemke D, Osenbrück K, Cirpka OA (2013) Modeling and inverting reactive stream tracers undergoing two-site sorption and decay in the hyporheic zone. Water Resour Res 49(6):3406–3422.  https://doi.org/10.1002/wrcr.20276 Google Scholar
  39. Liu YW, Wang W, Hu YM, Cui W (2016) Improving the distributed hydrological model performance in Upper Huai River basin: using streamflow observations to update the basin states via the ensemble Kalman filter. Adv Meteorol 2016:1–14.  https://doi.org/10.1155/2016/4921616 Google Scholar
  40. Liu DS, Zhao J, Chen XB, Li YY, Weiyan SP, Feng MM (2018) Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam-induced water fluctuations. Geosci J 22(3):465–475.  https://doi.org/10.1007/s12303-017-0065-x Google Scholar
  41. Lu CP, Chen S, Zhang Y, Su XR, Chen JH (2017) Heat tracing to determine spatial patterns of hyporheic exchange across a river transect. Hydrogeol J 25(6):1633–1646.  https://doi.org/10.1007/s10040-017-1553-9 Google Scholar
  42. Luce CH, Tonina D, Gariglio F, Applebee R (2013) Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series. Water Resour Res 49(1):488–506.  https://doi.org/10.1029/2012wr012380 Google Scholar
  43. McCallum AM, Andersen MS, Rau GC, Acworth RI (2012) A 1-D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resour Res 48(11):W11532.  https://doi.org/10.1029/2012wr012007 Google Scholar
  44. Mckay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245.  https://doi.org/10.1080/00401706.1979.10489755 Google Scholar
  45. Milly PCD (1987) Estimation of Brooks-Corey parameters from water retention data. Water Resour Res 23(6):1085–1089.  https://doi.org/10.1029/wr023i006p01085 Google Scholar
  46. Molina-Giraldo N, Bayer P, Blum P, Cirpka OA (2011) Propagation of seasonal temperature signals into an aquifer upon bank infiltration. Groundwater 49(4):491–502.  https://doi.org/10.1111/j.1745-6584.2010.00745.x Google Scholar
  47. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174.  https://doi.org/10.1080/00401706.1991.10484804 Google Scholar
  48. Munz M, Oswald SE, Schmidt C (2016) Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J Hydrol 539:74–87.  https://doi.org/10.1016/j.jhydrol.2016.05.012 Google Scholar
  49. Munz M, Oswald SE, Schmidt C (2017) Coupled long-term simulation of reach-scale water and heat fluxes across the river–groundwater interface for retrieving hyporheic residence times and temperature dynamics. Water Resour Res 53(11):8900–8924.  https://doi.org/10.1002/2017wr020667 Google Scholar
  50. Mutiti S, Levy J (2010) Using temperature modeling to investigate the temporal variability of riverbed hydraulic conductivity during storm events. J Hydrol 388(3–4):321–334.  https://doi.org/10.1016/j.jhydrol.2010.05.011 Google Scholar
  51. Naranjo RC, Smith DW (2016) Quantifying seepage using heat as a tracer in selected irrigation canals, Walker River basin, Nevada, 2012 and 2013. US Geol Surv Sci Invest Rep 2016-5133Google Scholar
  52. O’Toole P, Chambers JM, Bell RW (2018) Understanding the characteristics of riparian zones in low relief, sandy catchments that affect their nutrient removal potential. Agric Ecosyst Environ 258:182–196.  https://doi.org/10.1016/j.agee.2018.02.020 Google Scholar
  53. Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18(5):1093–1110.  https://doi.org/10.1007/s10040-010-0586-0 Google Scholar
  54. Rau GC, Andersen MS, Acworth RI (2012) Experimental investigation of the thermal dispersivity term and its significance in the heat transport equation for flow in sediments. Water Resour Res 48(3):W03511.  https://doi.org/10.1029/2011wr011038 Google Scholar
  55. Ren J, Wang XP, Shen ZZ, Zhao J, Yang J, Ye M, Zhou YJ, Wang ZH (2018) Heat tracer test in a riparian zone: laboratory experiments and numerical modelling. J Hydrol 563:560–575.  https://doi.org/10.1016/j.jhydrol.2018.06.030 Google Scholar
  56. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333.  https://doi.org/10.1063/1.1745010 Google Scholar
  57. Saha GC, Li J, Thring RW, Hirshfield F, Paul SS (2017) Temporal dynamics of groundwater-surface water interaction under the effects of climate change: a case study in the Kiskatinaw River watershed, Canada. J Hydrol 551:440–452.  https://doi.org/10.1016/j.jhydrol.2017.06.008 Google Scholar
  58. Sawyer AH, Cardenas MB, Bomar A, Mackey M (2009) Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrol Process 23(15):2129–2137.  https://doi.org/10.1002/hyp.7324 Google Scholar
  59. Sawyer AH, Cardenas MB, Buttles J (2012) Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resour Res 48(1):W01529.  https://doi.org/10.1029/2011wr011200 Google Scholar
  60. Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures: implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319.  https://doi.org/10.1016/j.advwatres.2010.04.007 Google Scholar
  61. Shanafield M, Hatch C, Pohll G (2011) Uncertainty in thermal time series analysis estimates of streambed water flux. Water Resour Res 47(3):W03504.  https://doi.org/10.1029/2010wr009574 Google Scholar
  62. Shao M, Horton R (1998) Integral method for estimating soil hydraulic properties. Soil Sci Soc Am J 62(3):585–592.  https://doi.org/10.2136/sssaj1998.03615995006200030005x Google Scholar
  63. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1(4):407–414Google Scholar
  64. Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827.  https://doi.org/10.1029/jz070i012p02821 Google Scholar
  65. Tao P, Wu SH, Dai EF, Liu YJ (2013) Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China. Appl Energy 107:384–393.  https://doi.org/10.1016/j.apenergy.2013.02.053 Google Scholar
  66. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898.  https://doi.org/10.2136/sssaj1980.03615995004400050002x Google Scholar
  67. Vogt T, Schirmer M, Cirpka OA (2012) Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol Earth Syst Sci 16(2):473–487.  https://doi.org/10.5194/hess-16-473-2012 Google Scholar
  68. Wang P, Pozdniakov SP, Shestakov VM (2015) Optimum experimental design of a monitoring network for parameter identification at riverbank well fields. J Hydrol 523:531–541.  https://doi.org/10.1016/j.jhydrol.2015.02.004 Google Scholar
  69. Wang LP, Jiang WW, Song JX, Dou XY, Guo HT, Xu SF, Zhang GT, Wen M, Long YQ, Li Q (2017a) Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data. Hydrogeol J 25(5):1283–1299.  https://doi.org/10.1007/S10040-017-1539-7 Google Scholar
  70. Wang Y, Ren J, Hu SB, Feng D (2017b) Global sensitivity analysis to assess salt precipitation for CO2 geological storage in deep saline aquifers. Geofluids 2017:1–16.  https://doi.org/10.1155/2017/5603923 Google Scholar
  71. Wilson AM, Woodward GL, Savidge WB (2016) Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment–water interface. J Hydrol 538:743–753.  https://doi.org/10.1016/j.jhydrol.2016.04.047 Google Scholar
  72. Yabusaki SB, Wilkins MJ, Fang Y, Williams KH, Arora B, Bargar J, Bargar J, Beller HR, Bouskill NJ, Brodie EL, Christensen JN, Conrad ME, Danczak RE, King E, Soltanian MR, Spaycher NF, Steefel CI, Tokunaga TK, Versteeg R, Waichler SR, Wainwright HM (2017) Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ Sci Technol 51(6):3307–3317.  https://doi.org/10.1021/acs.est.6b04873 Google Scholar
  73. Yao Y, Huang X, Liu J, Zheng C, He X, Liu C (2015) Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China. Hydrogeol J 23(5):999–1007.  https://doi.org/10.1007/s10040-015-1265-y Google Scholar
  74. Young MH, Karagunduz A, Šimůnek J, Pennell KD (2002) A modified upward infiltration method for characterizing soil hydraulic properties. Soil Sci Soc Am J 66(1):57–64.  https://doi.org/10.2136/sssaj2002.0057 Google Scholar
  75. Zhang JL, Song JX, Long YQ, Zhang Y, Zhang B, Wang YQ, Wang YY (2017) Quantifying the spatial variations of hyporheic water exchange at catchment scale using the thermal method: a case study in the Weihe River, China. Adv Meteorol 2017:1–8.  https://doi.org/10.1155/2017/6159325 Google Scholar
  76. Zhang JL, Song JX, Long YQ, Kong FH, Wang LP, Zhang Y, Li Q, Wang YQ, Hui YH (2018) Seasonal variability of hyporheic water exchange of the Weihe River in Shaanxi Province, China. Ecol Indic 92:278–287.  https://doi.org/10.1016/j.ecolind.2017.06.039 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Eco-hydraulics in Northwest Arid Region of ChinaXi’an University of TechnologyXi’anChina
  2. 2.Changjiang River Scientific Research InstituteWuhanChina

Personalised recommendations