Advertisement

Hydrogeology Journal

, Volume 27, Issue 3, pp 945–964 | Cite as

Hydrochemical and isotopic approach to dynamic recharge of a dolomite aquifer in South Africa

  • Liang Xiao
  • Yongxin XuEmail author
  • A. S. Talma
Paper
  • 397 Downloads

Abstract

The dolomite aquifer is the largest water source in northern South Africa. The flow dynamics of the dolomite aquifer is investigated by using analyses of the hydro-chemical parameters and isotopes (3H, δ2H, δ18O, δ13C-DIC and 14C-DIC) of spring samples. Recharge areas of the dolomite aquifer are confirmed through interpretation of the hydro-geochemical types of the spring samples. The important role of rainfall in groundwater recharge is suggested by low Na+ and Cl concentrations and by the δ2H and δ18O values of the spring samples. Groundwater mean residence time (MRT) and its temporal and spatial distributions within the young dolomite spring system can be analyzed using an improved lumped-parameter model based on the time series of 14C-DIC, initial 14C activities and δ13C-DIC values of the spring samples collected during the 1970s and 2000s. The results show that the spring samples have about 50–80% of the initial 14C activities and the MRTs of the dolomite spring system range from ≤10–51 years. At five spring sites, the temporal distributions of groundwater MRTs are identified to be significantly influenced by the variability of the local rainfall. At the Kuruman sites only, an increasing trend of the groundwater MRTs and the evolution of the [Ca2+]/[Mg2+] ratio along the flow direction indicate an important role of deep groundwater inflow to the spring flow. The results provide basic scientific information required for sustainable management of the dolomite aquifer.

Keywords

Hydrochemistry Flow dynamics Dolomite aquifer South Africa Sub-Saharan Africa 

Approche isotopique et hydrochimique de la dynamique de recharge d’un aquifère dolomitique d’Afrique du Sud

Résumé

L’aquifère dolomitique est la plus grande réserve en eau du nord de l’Afrique du Sud. L’hydrodynamique de l’aquifère dolomitique a été étudié à l’aide de l’analyse des paramètres hydrochimiques et isotopiques (3H, δ2H, δ18O, δ13C-CID et 14C-CID) des échantillons d’eau de sources. Les aires de recharge de l’aquifère dolomitique ont été confirmées par l’interprétation des types hydrochimiques des échantillons des sources. Le rôle important des pluies dans la recharge des eaux souterraines a été montré du fait des faibles concentrations en Na+ et Cl- et par les valeurs de δ2H and δ18O des échantillons des sources. Le temps moyen de résidence des eaux souterraines (TMR) et sa variabilité spatiale et temporelle au sein du système dolomitique jeune ont été analysés à l’aide d’un modèle à paramètres globaux se basant sur les séries de 14C-CID, de l’activité 14C initiale et des valeurs de δ13C-CID des sources échantillonnées durant les années 1970 et 2000. Les résultats indiquent que les sources échantillonnées présentent environ 50–80% d’activité en 14C initiale et des TMR du système de sources dolomitiques entre ≤10–51 ans. Pour cinq sources, la distribution temporelle des TMR des eaux souterraines a été identifiée comme influencée de manière significative par la variabilité locale des précipitations. Sur les sites de Kuruman uniquement, une augmentation de la tendance des TMR des eaux souterraines et l’évolution du rapport [Ca2+]/[Mg2+] le long des directions d’écoulement indiquent la part importante des eaux souterraines profondes à l’écoulement de la source. Ces résultats apportent une information scientifique nécessaire à la gestion durable de l’aquifère dolomitique.

Enfoque hidroquímico e isotópico de la recarga dinámica de un acuífero de dolomita en Sudáfrica

Resumen

El acuífero dolomítico es la fuente de agua más grande en el norte de Sudáfrica. La dinámica de flujo del acuífero dolomítico se investiga mediante análisis de los parámetros hidroquímicos e isótopos (3H, δ2H, δ18O, δ13C-DIC and 14C-DIC) en muestras de los manantiales. Las áreas de recarga del acuífero dolomítico se confirman a través de la interpretación de los tipos hidrogeoquímicos. El importante papel de la lluvia en la recarga de agua subterránea se sugiere por las bajas concentraciones de Na+ and Cl- y por los valores de δ2H and δ18O de las muestras de los manantiales. El tiempo medio de residencia (MRT) del agua subterránea y sus distribuciones temporales y espaciales dentro del sistema de manantiales de la dolomita se pueden analizar mediante un modelo de parámetros concentrados basado en la serie de tiempo de 14C-DIC, actividades iniciales de 14C y los valores de δ13C-DIC de los manantiales de las muestras recolectadas durante los años 1970 y 2,000. Los resultados indican que las muestras de los manantiales tienen alrededor del 50–80% de las actividades iniciales de 14C y los MRT del sistema de los manantiales de la dolomita van desde ≤10–51 años. En cinco sitios de manantiales, las distribuciones temporales de MRT del agua subterránea se identifican como significativamente influenciadas por la variabilidad de la precipitación local. Solo en los sitios de Kuruman, una tendencia creciente de los MRT de agua subterránea y la evolución de la relación [Ca2+]/[Mg2+] a lo largo de la dirección del flujo indican un papel importante de la entrada profunda de agua subterránea al flujo del manantial. Los resultados proporcionan información científica básica requerida para el manejo sostenible del acuífero dolomítico.

采用水化学和同位素方法了解南非一个白云岩含水层动力学补给

摘要

白云岩含水层是南非北部最大的水源供应地。通过利用泉水样的水化学参数和同位素(3H、 δ2H、 δ18O、 δ13C-DIC 及 14C-DIC)研究了白云岩含水层的水流动力学。通过泉水水样的水化学类型解译确定了白云岩含水层的补给区。Na+ 和 Cl-的低含量以及泉水样品中的δ2H 及 δ18O值表明了降雨在地下水补给中的重要作用。根据1970s 至2000s期间收集的样品中的14C-DIC时序、初始14C活度以及δ13C-DIC值,通过利用改进的集总参数模型分析了年轻白云岩泉水系统中地下水平均滞留时间及其时空分布。结果显示,白云岩泉水系统中泉水样品初始14C活度大约50%到80%,平均滞留时间为≤10到51年。在五个泉点,确定了地下水平均滞留时间的时间分布受到当地降雨的极大影响。仅在Kuruman一地,地下水平均滞留时间增加的趋势以及沿水流方向的[Ca2+]/[Mg2+]比值演化表明,深层地下水入流对泉流有重要作用。结果提供了白云岩含水层可持续管理所需的基本科学信息。

Abordagem hidroquímica e isotópica da recarga dinâmica de um aquífero dolimítico na África do Sul

Resumo

O aquífero dolomítico é a maior fonte de água no norte da África do Sul. A dinâmica de fluxo do aquífero dolomítico é investigada por meio de análises de parâmetros e isótopos hidroquímicos (3H, δ2H, δ18O, δ13C-DIC e 14C-DIC) de amostras de nascentes. As áreas de recarga do aquífero dolomítico são confirmadas através da interpretação dos tipos hidrogeoquímicos das amostras de nascentes. O papel importante da precipitação na recarga das águas subterrâneas é sugerido pelas baixas concentrações de Na+ e Cl- e pelos valores de δ2H e δ18O das amostras de nascentes. O tempo médio de permanência (TMP) das águas subterrâneas e suas distribuições temporais e espaciais dentro do jovem sistema de nascentes dolomíticas podem ser analisados ​​usando um modelo de parâmetros agrupados melhorado baseado na série temporal de 14C-DIC, atividades iniciais de 14C e valores de δ13C-DIC das amostras coletadas das nascentes durante as décadas de 1970 e 2000. Os resultados mostram que as amostras de nascentes têm cerca de 50–80% das atividades iniciais de 14C e os TMPs do sistema de nascentes dolomíticas variam de ≤10–51 anos. Em cinco locais de nascentes, as distribuições temporais de TMPs das águas subterrâneas são identificadas como sendo significativamente influenciadas pela variabilidade da precipitação local. Apenas nos locais de Kuruman, uma tendência crescente dos TMPs subterrâneos e a evolução da relação [Ca2+]/[Mg2+] ao longo da direção do fluxo indicam um importante papel do fluxo de águas subterrâneas profundas para o fluxo da nascente. Os resultados fornecem informações científicas básicas necessárias para o manejo sustentável do aquífero dolomítico.

Notes

Acknowledgements

Eddy van Wyk is appreciated for data collection. Stephan Woodborne is thanked for handling laboratory analyses at Council for Scientific and Industrial Research (Pretoria, CSIR). Individuals, including Carel Taljaard, Frans Mokgatle and Johan Talma, are appreciated for their support during data collection in the field.

Funding information

This research was partly supported by the National Natural Science Foundation of China (grant numbers 51469002, 51009029 and 41807197), the Natural Science Foundation of Guangxi (grant numbers 2017GXNSFBA198087 and 2014GXNSFBA118263), and the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (grant number 2016ZDX004).

References

  1. Bredenkamp DB (2000) Groundwater monitoring: a critical review of groundwater monitoring in water resources evaluation and management. Water Research Commission, PretoriaGoogle Scholar
  2. Bredenkamp DB (2007) Use of natural isotopes and groundwater quality for improved estimation of recharge and flow in dolomitic aquifers. Water SA 33(1):87–94Google Scholar
  3. Bredenkamp DB, Vogel JC (1970) A study of a dolomitic aquifer with 14C and tritium. In: Isotope hydrology. IAEA, Vienna, pp 349–372Google Scholar
  4. Bredenkamp DB, Schutte JM, Du Toit GJ (1974) Recharge of a dolomitic aquifer as determined from tritium profiles. In: Isotope techniques in groundwater hydrology. IAEA, Vienna, pp 73–95Google Scholar
  5. Bredenkamp DB, Botha LJ, Esterhuyse C (1992) The geohydrology of the Kuruman eye and quantitative estimation of recharge and storativity of the aquifer. Department of Water Affairs and Forestry, PretoriaGoogle Scholar
  6. Bredenkamp DB, Botha LJ, van Tonder GJ (1995) Manual on quantitative estimation of groundwater recharge and aquifer Storativity. Report TT 73/95 Water Research Commission, PretoriaGoogle Scholar
  7. Bredenkamp DB, Vogel JC, Wiegmans FE, Xu YX, Janse van Rensburg H (2007) Use of natural isotopes and groundwater quality for improving estimation of recharge and flow in dolomitic aquifers. Water Research Commission, PretoriaGoogle Scholar
  8. Brink ABA (1979) Engineering geology of southern Africa. Building Publications, PretoriaGoogle Scholar
  9. Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. J Hydrol 382(1–4):174–187.  https://doi.org/10.1016/j.jhydrol.2009.12.032 Google Scholar
  10. Chen ZY, Nie ZL, Zhang ZJ, Qi JX, Nan YJ (2005) Isotopes and sustainability of ground water resources, North China plain. Groundwater 43(4):485–493Google Scholar
  11. Coetsiers M, Walraevens K (2009) A new correction model for 14C ages in aquifers with complex geochemistry: application to the Neogene Aquifer, Belgium. Appl Geochem 24(5):768–776.  https://doi.org/10.1016/j.apgeochem.2009.01.003 Google Scholar
  12. De Freitas MH, Wolmarans JF (1978) Dewatering and settlement in the Bank Compartment of the far West Rand, South Africa. SAIMOS-78 Conference proceedings, Granada, SpainGoogle Scholar
  13. Douglas AA, Osiensky JL, Keller CK (2007) Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. J Hydrol 334(3):502–512.  https://doi.org/10.1016/j.jhydrol.2006.10.028 Google Scholar
  14. Hoque MA, Burgess WG (2012) 14C dating of deep groundwater in the Bengal aquifer system, Bangladesh: implications for aquifer anisotropy, recharge sources and sustainability. J Hydrol 444:209–220Google Scholar
  15. Karina M, Dioni IC, Jon-Philippe P, Suzanne H, Geraldine J (2011) Using 14C and 3H to delineate a recharge ‘window’ into the Perth Basin aquifers, north Gnangara groundwater system, Western Australia. Sci Total Environ 414:456–469.  https://doi.org/10.1016/j.scitotenv.2011.10.016 Google Scholar
  16. Kazemi AG, Lehr JH, Perrochet P (2008) Groundwater age. Wiley, New YorkGoogle Scholar
  17. Kronfeld J, Vogel JC, Talma AS (1994) A new explanation for extreme 234U/238U disequilibria in a dolomitic aquifer. Earth Planet Sci Lett 123(1):81–93.  https://doi.org/10.1016/j.jenvrad.2015.10.020 Google Scholar
  18. Le Gal La Salle C, Marlin C, Leduc C et al (2001) Renewal rate estimation of groundwater based on radioactive tracers (3H, 14C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. J Hydrol 254(1):145–156.  https://doi.org/10.1016/S0022-1694(01)00491-7 Google Scholar
  19. Maloszewski P, Zuber A (1993) Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data. Adv Water Resour 16:173–190.  https://doi.org/10.1016/0309-1708(93)90036-F Google Scholar
  20. Maloszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrogeology. TECDOC-910, IAEA, Vienna, pp 9–58Google Scholar
  21. Maloszewski P, Zuber A (1998) A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems (Journal of Hydrology 179 (1996) 1–21) Comments. J Hydrol 204(1–4):297–300.  https://doi.org/10.1016/S0022-1694(97)00122-4 Google Scholar
  22. Mekiso FA, Ochieng GM, Snyman J (2015) Isotope hydrology in the middle Mohlapitsi catchment, South Africa. Int J Eng Res Dev 11(01):1–7Google Scholar
  23. Mokrik R, Mažeika J, Baublytė A et al (2008) The groundwater age in the middle–upper Devonian aquifer system, Lithuania. Hydrogeol J 17(4):871–889.  https://doi.org/10.1007/s10040-008-0403-1 Google Scholar
  24. Mook WG (2000) Environmental isotopes in the hydrological cycle: principles and applications. IAEA, ViennaGoogle Scholar
  25. Partridge TC (1985) Spring flow and tufa accretion. In: Tobias PV (ed) Hominid evolution: past, present and future. Liss, New YorkGoogle Scholar
  26. Pearson FJ, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: Isotope hydrology. 1970 Proceedings of a symposium on use of isotopes in hydrology, IAEA, ViennaGoogle Scholar
  27. Rosewarne PN (2006) Groundwater resource assessment: dolomite aquifer. Department of Water Affairs and Forestry, PretoriaGoogle Scholar
  28. Schrader A, Winde F, Erasmus E (2014) Using impacts of deep-level mining to research karst hydrology: Darcy-based approach to predict the future of dried-up dolomitic springs in the far West Rand goldfield (South Africa), part 1—a conceptual model of recharge and intercompartmental flow. Environ Earth Sci 72(9):3549–3565Google Scholar
  29. Stewart MK (2012) A 40-year record of carbon-14 and tritium in the Christchurch groundwater system, New Zealand: dating of young samples with carbon-14. J Hydrol 430:50–68.  https://doi.org/10.1016/j.jhydrol.2012.01.046 Google Scholar
  30. Talma AS, Bredenkamp DB (1985) Isotope work on the Transvaal Dolomites. In: Groundwater. Geological Society of South Africa, PretoriaGoogle Scholar
  31. Talma AS, Vogel JC (2001) Isotopic and chemical signatures of water in the Transvaal dolomite springs. CSIR Report ENV-PC-2001/040, Water Research Commission, PretoriaGoogle Scholar
  32. Tamers MA (1975) The validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239.  https://doi.org/10.1007/BF01447909 Google Scholar
  33. Tamiru A (2013) The use of isotope hydrology to characterise and assess water resources in south(ern) Africa. CSIR report, Water Research Commission, PretoriaGoogle Scholar
  34. Van Rensburg HJ (1995) Management of southern African aquifers. PhD Thesis, University of the UOFS, Bloemfontein, South AfricaGoogle Scholar
  35. Verhagen BT, Smith PE, McGeorge I et al (1979) Groundwater studies in the Gamagara catchment. Water Research Commission, PretoriaGoogle Scholar
  36. Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Stable isotopes and plant carbon-water relations. Academic, San DiegoGoogle Scholar
  37. Weaver JMC, Cavé L, Talma AS (2007) Groundwater sampling, 2nd edn. WRC report TT303/07. Water Research Commission, PretoriaGoogle Scholar
  38. Winde P, Erasmus EP (2011) Peatlands as filters for polluted mine water? A case study from an uranium-contaminated karst system in South Africa, part I—hydrogeological setting and U fluxes. Water 3(1):291–322.  https://doi.org/10.3390/w3010291 Google Scholar
  39. Zuber A (1986a) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 1–59Google Scholar
  40. Zuber A (1986b) On the interpretation of tracer data in variable flow systems. J Hydrol 86:45–57.  https://doi.org/10.1016/0022-1694(86)90005-3 Google Scholar
  41. Zuber A, Maloszewski P (2000) Lumped parameter models. In: Mook WG (ed) Environmental isotopes in the hydrological cycle principles and applications. IAEA and UNESCO, Vienna and Paris, pp 5–35Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Civil Engineering and ArchitectureGuangxi UniversityNanningChina
  2. 2.Guangxi Key Laboratory of Disaster Prevention and Engineering SafetyGuangxi UniversityNanningChina
  3. 3.Key Laboratory of Disaster Prevention and Structural Safety of Ministry of EducationGuangxi UniversityNanningChina
  4. 4.Institute of Africa Water Resources and EnvironmentHebei University of EngineeringHandanChina
  5. 5.Department of Earth SciencesUniversity of the Western CapeBellvilleSouth Africa
  6. 6.Natural Resources and the EnvironmentCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations