Advertisement

An integrated approach for choosing suitable pumping strategies for a semi-arid region in Jordan using a groundwater model coupled with analytical hierarchy techniques

  • Jafar AlkhatibEmail author
  • Irina Engelhardt
  • Lars Ribbe
  • Martin Sauter
Paper
  • 39 Downloads

Abstract

The Azraq basin, Jordan, is characterized by high variability and a heterogeneous spatial distribution of groundwater recharge. Most of the recharge occurs in the north of the basin. The central part of the basin is covered by wetland (Azraq Oasis), characterized by a unique ecosystem and biodiversity. Groundwater abstraction for agricultural and domestic purposes occurs mainly near the oasis and results in a considerable decline of the water table. A groundwater model was developed for the Azraq basin to analyze and predict the groundwater level response to different pumping strategies. The model also enables determination of the safe yield. The extent to which the safe yield and specific pumping strategies are socially and economically acceptable was analyzed. Multi-criteria analysis using an analytic hierarchy process was applied to obtain the abstraction rate that achieves the most suitable trade-off between environmental and socio-economic criteria under two scenarios of future socio-economic development. Based on the calibrated groundwater model the response of the groundwater level until 2045 was simulated, resulting in a 15–25 m decline if current pumping strategies continue. At present, the safe yield of the groundwater resource equals 30% of the overall actual pumping rate, indicating that the aquifer is highly exploited. Results of the multi-criteria analysis show that the ‘safe yield alternative’ is the most suitable for the basin under a scenario of future economic prosperity. For circumstances of poor economy and low social awareness, keeping the current pumping rate was found to be the scenario with the highest priority.

Keywords

Groundwater management MODFLOW Jordan Analytic hierarchy process Socio-economic aspects 

Une approche intégrée pour choisir les stratégies adéquates de pompage dans une région semi-aride de Jordanie en utilisant un modèle d’écoulement d’eaux souterraines couplé à des techniques de hiérarchie analytique

Résumé

Le bassin d’Azraq (Jordanie) est caractérisé par une recharge des eaux souterraines très variable et distribuée spatialement de manière hétérogène. La majorité de la recharge se produit dans la partie nord du bassin. La partie centrale du bassin est constituée d’une zone humide (l’oasis d’Azraq), caractérisée par un écosystème et une biodiversité uniques. Les prélèvements d’eaux souterraines pour les usages agricole et domestique se situent principalement près de l’oasis et produisent un abaissement considérable du niveau de la nappe. Un modèle d’écoulement d’eaux souterraines a été développé pour l’aquifère du bassin d’Azraq afin d’analyser et prédire la réponse des niveaux d’eau souterraines à différentes stratégies de prélèvement. Le modèle permet également de déterminer le débit d’exploitation durable. Le degré d’acceptabilité sociale et économique de ce débit et des stratégies de prélèvement a été analysé. Une analyse multicritères utilisant la méthode de hiérarchie analytique a été appliquée pour obtenir le débit de prélèvement qui correspond au meilleur compromis entre critères environnementaux et socio-économiques pour deux scénarios de futurs développements socio-économiques. Basé sur le modèle d’écoulement calibré, l’évolution des niveaux d’eau jusqu’en 2045 a été simulé, résultant en une baisse de 15 à 25 m si les stratégies actuelles de pompage sont maintenues. Actuellement, le débit d’exploitation durable correspond à 30% des débits totaux réellement pompés, indiquant que l’aquifère est intensément exploité. Les résultats de l’analyse multicritères montre que le “débit d’exploitation durable” est le plus adéquat pour le bassin dans un scénario de future prospérité économique. Dans des circonstances d’économie affaiblie et de faible conscience sociale, le maintien de l’actuel débit d’exploitation s’est révélé être le scénario prioritaire.

Un enfoque integrado para seleccionar estrategias de bombeo adecuadas para una región semiárida en Jordania utilizando un modelo de agua subterránea acoplado con técnicas de jerarquía analítica

Resumen

La cuenca de Azraq, Jordania, se caracteriza por una gran variabilidad y una distribución espacial heterogénea en la recarga del agua subterránea. La mayor parte de la recarga se produce en el norte de la cuenca. La parte central está cubierta por un humedal (Azraq Oasis), caracterizado por ser un ecosistema único y por su biodiversidad. La extracción de agua subterránea para fines agrícolas y domésticos ocurre principalmente cerca del oasis y da como resultado una profundización considerable del nivel freático. Se desarrolló un modelo de agua subterránea para la cuenca Azraq para analizar y predecir la respuesta del nivel de agua subterránea a diferentes estrategias de bombeo. El modelo también permite la determinación del rendimiento seguro. Se analizó en qué medida el rendimiento seguro y las estrategias de bombeo específicas son social y económicamente aceptables. Se aplicó un análisis de criterios múltiples mediante un proceso de jerarquía analítica para obtener el caudal de extracción que logra la compensación más adecuada entre los criterios ambientales y socioeconómicos en dos escenarios de desarrollo socioeconómico futuro. Sobre la base de un modelo de agua subterránea calibrado, se simuló la respuesta del nivel de agua subterránea hasta 2045, lo que provocó un descenso de 15 a 25 m si las actuales estrategias de bombeo continúan. En la actualidad, el rendimiento seguro del recurso de agua subterránea es igual al 30% del total del caudal de bombeo real, lo que indica que el acuífero está altamente explotado. Los resultados del análisis de criterios múltiples muestran que la “alternativa de rendimiento seguro” es la más adecuada para la cuenca en un escenario de prosperidad económica futura. Para las circunstancias de una economía pobre y una baja conciencia social, se encontró que mantener el caudal de bombeo actual es el escenario con la mayor prioridad.

采用地下水模型结合解析层次技术选择约旦半干旱地区合适的抽水策略的综合方法

摘要

约旦的阿兹拉克流域的特点就是地下水补给变化很大,空间分布不均匀。大多数补给出现在流域的北部。流域中部是湿地(阿兹拉克绿洲),这个湿地的特征是一个独一无二的生态系统,并且呈现出生物多样性。农业以及家庭用抽水主要在绿洲附近,导致水位大幅下降。为阿兹拉克流域建立了地下水模型,针对不同抽水策略分析和预测地下水位。模型还能够确定安全出水量。分析了安全出水量及单位抽水策略社会上和经济上可接受的程度。利用采用解析层次过程的多标准分析方法获取了能够实现未来社会-经济发展两种方案下社会和经济标准之间最适合交易的抽水量。根据校正的地下水模型,模拟了直到2045年地下水位的响应,结果显示,如果现行的抽水策略继续下去,水位将下降15–25米。目前,地下水资源的安全出水量等于实际总抽水量的30%,这表明,含水层遭到高度开采。多标准分析结果显示,“安全出水量选择”最适合流域未来经济繁荣方案。针对很差的经济和很低的社会意识这种情况,发现保持目前的抽水量是最优先考虑的方案。

Uma abordagem integrada para a escolha de estratégias de bombeamento adequadas para uma região semiárida na Jordânia usando um modelo de água subterrânea juntamente com técnicas analíticas hierárquicas

Resumo

A bacia de Azraq, Jordânia, é caracterizada pela alta variabilidade e heterogeneidade da distribuição espacial da recarga das águas subterrâneas. A maior parte da recarga ocorre no norte da bacia. A parte central da bacia é coberta por zonas úmidas (Oásis de Azraq), caracterizadas por um ecossistema e biodiversidade únicos. A captação de águas subterrâneas para fins agrícolas e domésticos ocorre principalmente perto do oásis e resulta em um declínio considerável do lençol freático. Um modelo de águas subterrâneas foi desenvolvido para a bacia de Azraq para analisar e prever a resposta do nível de água subterrânea a diferentes estratégias de bombeamento. O modelo também permite determinar o rendimento seguro. A extensão em que o rendimento seguro e as estratégias específicas de bombeamento são social e economicamente aceitáveis foi analisada. A análise multicritério, utilizando um processo analítico hierárquico, foi aplicada para obter a taxa de abstração que alcança o trade-off (relação de perde-ganha) mais adequado entre critérios ambientais e socioeconômicos em dois cenários de desenvolvimento socioeconômico futuro. Com base no modelo de águas subterrâneas calibrado, a resposta do nível das águas subterrâneas até 2045 foi simulada, resultando em um declínio de 15 a 25 m caso as atuais estratégias de bombeamento continuem. Atualmente, o rendimento seguro do recurso de água subterrânea é igual a 30% da taxa de bombeamento total, indicando que o aquífero é altamente explorado. Os resultados da análise multicritério mostram que a “alternativa de rendimento seguro” é a mais adequada para a bacia em um cenário de futura prosperidade econômica. Para as circunstâncias de economia fraca e baixa consciência social, a manutenção da atual taxa de bombeamento foi considerada o cenário com a maior prioridade.

References

  1. Abdulla FA, Al-Khatib MA, Al-Ghazzawi ZD (2000) Development of groundwater modeling for the Azraq Basin, Jordan. Environ Geol 40(1–2)Google Scholar
  2. Abu-El-Sha’r W, Hatamleh R (2007) Using Modflow and MT3D groundwater flow and transport models as a management tool for the Azraq groundwater system, Jordan. J Civil Eng 1(2):153–172Google Scholar
  3. Al-Kharabsheh A (1995) Possibilities of artificial groundwater recharge in the Azraq Basin: potential surface water utilization of five representative catchment areas (Jordan). PhD Thesis, Selbstverlag des Lehr- u. Forschungsbereichs Hydrologie und Umwelt am Inst. für Geologie, GermanyGoogle Scholar
  4. Al-Kharabsheh A (2000) Ground-water modelling and long-term management of the Azraq basin as an example of arid area conditions (Jordan). J Arid Environ 44:143–153CrossRefGoogle Scholar
  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, RomeGoogle Scholar
  6. Anane M, Bouziri L, Limam A, Jellali S (2012) Ranking suitable sites for irrigation with reclaimed water in the Abeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis. Resour Conserv Recycl 65:36–46CrossRefGoogle Scholar
  7. Arabtech Consulting Engineering (1994) Groundwater investigation in the Azraq basin. Ministry of Water and Irrigation, Water Authority, Amman, JordanGoogle Scholar
  8. Bosch D, Pease J, Wolfe ML, Zobel C, Osorio J, Cobb TD, Evanylo G (2012) Community decisions: stakeholder focused watershed planning. J Environ Manag 112:226–232CrossRefGoogle Scholar
  9. Brunelli M (2015) Introduction to the analytic hierarchy process. Springer, Heidelberg, GermanyGoogle Scholar
  10. Delgado-Galván X, Pérez-García R, Izquierdo J, Mora-Rodríguez J (2010) An analytic hierarchy process for assessing externalities in water leakage management. Math Comput Model 52:1194–1202CrossRefGoogle Scholar
  11. Doherty J (1994) Model independent parameter estimation. Manual of PEST. http://pesthomepage.org/. Accessed January 2019
  12. Dottridge J, Jaber NA (1999) Groundwater resources and quality in northeastern Jordan: safe yield and sustainability. Appl Geogr 19:313–323CrossRefGoogle Scholar
  13. El-Naqa A, Al-Momani M, Kilani S, Hammouri N (2007) Groundwater deterioration of shallow groundwater aquifers due to overexploitation in northeast Jordan. CLEAN Soil Air Water 35(2):156–166CrossRefGoogle Scholar
  14. GLOWA (2011) Future management of the Jordan river basin’s water and land resources under climate change, a scenario analysis: summary report. GLOWA, Universitätsbibliothek Tübingen, Tübingen, Germany, 201 ppGoogle Scholar
  15. Goode J, Senior LA, Subah A, Jaber A (2013) Groundwater level trends and forecasts, and salinity trends in the Azraq, Dead Sea, Hammad, Groundwater basins, Jordan. US Geol Surv Open-File Rep 2013-1061Google Scholar
  16. GWP (2000) Integrated water resources management. Global water partnership (GWP) Technical Advisory Committee background (TAZ) paper 4, GWP, Stockholm, SwedenGoogle Scholar
  17. Hashemi H, Berndtsson R, Kompani-Zare M, Person M (2013) Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrol Earth Syst Sci 17:637–650CrossRefGoogle Scholar
  18. Holber M, Margane A, Almomani M, Subah A (2001) Groundwater resources of northern Jordan, vol 4: contribution to the hydrogeology of northern Jordan. BGR-WAJ technical cooperation project, Water Authority of Jordan, Amman, JordanGoogle Scholar
  19. Kalbar PP, Karmakar S, Asolekar SR (2013) The influence of expert opinions on the selection of wastewater treatment alter-natives: a group decision-making approach. J Environ Manag 128:844–851CrossRefGoogle Scholar
  20. Liu C, Chou Y, Lin S, Lin G, Jang C (2010) Management of high groundwater level aquifer in the Taipei Basin. Water Resour Manag.  https://doi.org/10.1007/s11269-010-9617-9
  21. McDonald MG, Harbaugh AW (1988) MODFLOW. A modular three-dimensional finite difference groundwater flow model. US Geological Survey Open-File Rep 83-875Google Scholar
  22. Mesnil A, Habjoka N (2012) The Azraq dilemma: past, present and future groundwater management. German-Jordanian Programme “Management of Water Resources”, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Jordanian Ministry of Water and Irrigation (MWI), Amman, Jordan, 64 ppGoogle Scholar
  23. Millennium Ecosystem Assessment (2005) Ecosystems and human wellbeing: wetlands and water synthesis. World Resources Institute, Washington, DCGoogle Scholar
  24. Noble P (1994) Quantification of recharge to the Azraq basin, north-east Badia, Jordan. MSc Thesis, University College LondonGoogle Scholar
  25. Olson DL (1988) Opportunities and limitations of AHP in multiobjective programming. Math Comput Model 11:206–209CrossRefGoogle Scholar
  26. Peralta R, Timani B, Das R (2011) Optimizing safe yield policy implementation. Water Resour Manag 25(2):483–508CrossRefGoogle Scholar
  27. Rahman MA, Rusteberg B, Salah Uddin M, Lutz A, Abusaada M, Sauter M (2013) An integrated study of spatial multicriteria analysis and mathematical modeling for managed aquifer recharge site suitability mapping and site ranking at northern Gaza coastal aquifer. J Environ Manag 124:25–39CrossRefGoogle Scholar
  28. Rimawi O (1985) Hydrogeochemistry and isotope hydrology of the ground- and surface water in North Jordan (north-northeast of Mafraq, Dhuleil-Hallabat, Azraq-Basin). PhD Thesis, Technische Universität München, GermanyGoogle Scholar
  29. Roseta-Palman C, Iglesiasy E, Koppl-Turynaz M (2015) Illegal groundwater pumping. Paper for the 59th AARES annual conference, Rotorua, New Zealand, February 2015Google Scholar
  30. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  31. Saaty TL (2008) Relative measurement and its generalization in decision making: why pairwise comparisons are central in mathematics for the measurement of intangible factors—the analytic hierarchy/network process. RACSAM 102(2):251–318CrossRefGoogle Scholar
  32. SCS (1985) SCS national engineering handbook (section 4): hydrology. Soil Conservation Service, USDA, Washington, DCGoogle Scholar
  33. Wu R, Molina GL, Fiaz H (2018) Optimal sites identification for rainwater harvesting in northeastern Guatemala by analytical hierarchy process. Water Resour Manag 32:4139–4153CrossRefGoogle Scholar
  34. Zektser S, Loáiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47(3):396–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jafar Alkhatib
    • 1
    • 2
    Email author
  • Irina Engelhardt
    • 3
  • Lars Ribbe
    • 1
  • Martin Sauter
    • 2
  1. 1.Institute for Technology and Resources Management in the Tropics and SubtropicsTH KölnCologneGermany
  2. 2.Department of Applied GeologyGeorg-August-University GöttingenGöttingenGermany
  3. 3.Hydrogeology DepartmentTU-BerlinBerlinGermany

Personalised recommendations