Advertisement

Review: Approaches to groundwater exploration and resource evaluation in the crystalline basement aquifers of Zimbabwe

  • Innocent MuchingamiEmail author
  • Constant Chuma
  • Mervyn Gumbo
  • Dumisani Hlatywayo
  • Robin Mashingaidze
Paper
  • 18 Downloads

Abstract

Assessment of the groundwater potential of crystalline basement aquifers is challenging. These systems can be highly spatially variable, as indicated by the drilling of numerous dry boreholes and seasonal variation in discharge rates. This paper reviews methodologies applied for the evaluation of groundwater occurrence and yield estimation in the crystalline basement aquifers of Zimbabwe. These aquifers underlie much of the country and are described in terms of low yield owing to low recharge potential in the semiarid climate. In such regions, exploitable groundwater forms a strategic supply of potable water used to meet the socio-economic needs of the local population. Case studies are used to show how remote sensing and geophysical methods are integrated to improve borehole success rates in the basement aquifers of Zimbabwe. Potential threats to groundwater resources and quality within crystalline basement aquifers are discussed. It can be concluded that major issues remain to be addressed if sustainable use of the water resources of crystalline basement aquifers in Zimbabwe is to be achieved, especially with respect to borehole-siting approaches and prevention of groundwater contamination. The key recommendation is to address the paucity of primary groundwater monitoring data within the crystalline basement aquifers at the national level, thereby creating a technical groundwater management framework.

Keywords

Zimbabwe Crystalline rocks Groundwater potential Hydro-geophysical Vulnerability Sub-Saharan Africa 

Revue: Approches pour l’exploration des eaux souterraines et l’évaluation de la ressource des aquifères de socle du Zimbabwe

Résumé

L’évaluation des potentialités en eau souterraine des aquifères de socle reste difficile. Ces systèmes peuvent être très variables spatialement, tel qu’indiqué par l’existence de nombreux forages secs et les variations saisonnières des débits de pompage. Cet article examine les méthodologies mises en œuvre pour l’évaluation de la présence d’eau souterraine et l’estimation de la productivité dans les aquifères de socle du Zimbabwe. Ces aquifères sont présents sur une large partie du pays et sont décrits comme peu productifs à cause d’un potentiel de recharge limité en contexte de climat semi-aride. Dans ces régions, l’eau souterraine exploitable constitue une source d’approvisionnement en eau potable stratégique pour satisfaire les besoins socio-économiques des populations locales. Les cas d’étude sont utilisés pour montrer comment la télédétection et les méthodes géophysiques sont intégrées pour améliorer les taux de succès des forages dans les aquifères du socle du Zimbabwe. Les risques potentiels sur les ressources en eau souterraine et leur qualité sont discutés. En conclusion, des questions importantes restent à aborder si une utilisation durable des ressources en eau des aquifères de socle du Zimbabwe doit être atteinte, en particulier pour ce qui concerne les approches d’implantation des forages et la prévention de la contamination des eaux souterraines. La principale recommandation est de répondre à l’insuffisance de données de suivi des eaux souterraines dans les aquifères de socle à l’échelle nationale, en mettant en place un cadre technique de gestion des ressources en eau souterraine.

Revisión: Enfoques para la exploración y evaluación de los recursos de aguas subterráneas en acuíferos del basamento cristalino de Zimbabwe

Resumen

La evaluación del potencial de agua subterránea de los acuíferos del basamento cristalino es un desafío. Estos sistemas pueden ser altamente variables espacialmente, como lo indica la perforación de numerosos pozos secos y la variación estacional en las tasas de descarga. Este artículo revisa las metodologías aplicadas para la evaluación de la presencia de agua subterránea y la estimación del rendimiento en los acuíferos del basamento cristalino en Zimbabwe. Estos acuíferos subyacen en gran parte del país y se describen en términos de bajo rendimiento debido al bajo potencial de recarga en el clima semiárido. En tales regiones, el agua subterránea explotable se constituye en un suministro estratégico de agua potable que se utiliza para satisfacer las necesidades socioeconómicas de la población local. Los estudios de casos se utilizan para mostrar cómo se integran los métodos de percepción remota y geofísicos para mejorar las tasas de éxito de los pozos en los acuíferos del basamento en Zimbabwe. Se discuten las amenazas potenciales a los recursos y la calidad del agua subterránea dentro de los acuíferos del basamento cristalino. Se puede concluir que aún quedan por resolver los principales problemas para lograr el uso sostenible de los recursos hídricos de dichos acuíferos en Zimbabwe, especialmente con respecto a los enfoques de la ubicación de pozos y la prevención de la contaminación del agua subterránea. La recomendación clave es abordar la escasez de datos de monitoreo en los acuíferos del basamento cristalino a nivel nacional, creando así un marco técnico para la gestión del agua subterránea.

综述:津巴布韦结晶基岩含水层地下水勘查和资源评价方法

摘要

结晶基岩含水层地下水潜力评价具有挑战性。这些系统空间上可能变化无常,正如众多干井眼钻探及排泄量季节性变化表明的那样。本文综述了津巴布韦结晶基岩含水层地下水分布评估及出水量估算中应用的方法。这些含水层分布于整个国家大部分地区,由于半干旱气候中补给潜力很低,因此,出水量不大。在这样的地区,可开采的地下水形成了饮用水的战略供给,以满足当地居民的社会-经济需求。本文用研究案例展示了遥感和地球物理方法是怎样结合在一起提高津巴布韦基岩钻孔成功率的。论述了对结晶基岩内地下水资源和水质的威胁。结论是,如果要实现津巴布韦结晶基岩水资源的可持续利用,特别是针对钻孔选址方法以及地下水污染的预防,主要问题依然需要解决。关键的建议是解决国家层面上结晶基岩含水层基本的地下水监测数据。从而,搭建起技术上的地下水管理框架。

Revisão: Abordagens para a exploração de águas subterrâneas e avaliação de recursos nos aquíferos do embasamento cristalino do Zimbábue

Resumo

A avaliação do potencial das águas subterrâneas de aquíferos de embasamento cristalino é um desafio. Estes sistemas podem ser altamente variáveis espacialmente, como indicado pela perfuração de numerosos furos secos e variações sazonais nas taxas de descarga. Este artigo revisa metodologias aplicadas para a avaliação da ocorrência e estimativa da produção de água subterrânea nos aquíferos do embasamento cristalino do Zimbábue. Estes aquíferos cobrem grande parte do país e são descritos em termos de baixo rendimento devido ao baixo potencial de recarga no clima semiárido. Em tais regiões, as águas subterrâneas exploráveis formam um suprimento estratégico de água potável usado para atender às necessidades socioeconômicas da população local. Estudos de caso são usados para mostrar como métodos de sensoriamento remoto e geofísicos são integrados para melhorar as taxas de sucesso de poços nos aquíferos de embasamento do Zimbábue. Ameaças potenciais aos recursos de água subterrânea e qualidade dentro de aquíferos de embasamento cristalino são discutidas. Pode-se concluir que as principais questões que ainda precisam ser abordadas para alcançar o uso sustentável dos recursos hídricos dos aquíferos de embasamento cristalino no Zimbábue, especialmente no que diz respeito a abordagens de localização de poços e prevenção da contaminação das águas subterrâneas. A principal recomendação é abordar a escassez de dados primários de monitoramento de águas subterrâneas dentro dos aquíferos do embasamento cristalino em nível nacional, criando assim um arcabouço técnico de gerenciamento de águas subterrâneas.

References

  1. Archie GE (1942) Electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–61CrossRefGoogle Scholar
  2. Bala AE, Ike EC (2001) The aquifer of the crystalline basement rocks in Gusau area, north western Nigeria. J Min Geol 37(2):177–184Google Scholar
  3. Bhattacharya PK, Patra HP (1968) Direct current geoelectrical sounding. Elsevier, Amsterdam, 135 ppGoogle Scholar
  4. Bernardi A, Detay M, Machard de Gramont H (1988) Recherche d’eau dans le socle africain. Correlation entre les Parametres geoelectriques et les caractristiques hydrodynamiques des forages en zone de socle [Searching for water in the African basements: correlation between geoelectrical parameters and the hydrodynamic characteristics of boreholes in basement areas]. Hydrogeologie 4:245–253Google Scholar
  5. Carruthers RM, Greenbaum D, Peart RJ, Herbert R (1991) Geophysical investigation of photo-lineaments in southeast Zimbabwe. Q J Eng Hydrogeol 24:437–451CrossRefGoogle Scholar
  6. Chilton PJ, Foster SSD (1995) Hydrogeological characterisation and water-supply potential of basement aquifers in tropical Africa. J Hydrol 3(1):36–49Google Scholar
  7. Chuma C, Orimoogunje OIO, Hlatywayo DJ, Akinyede OJ (2013a) Application of remote sensing and geographical information systems in determining the groundwater potential in the crystalline basement of Bulawayo metropolitan area, Zimbabwe. Sci Res Adv Remote Sens J 2(2):149–116Google Scholar
  8. Chuma C, Hlatywayo DJ, Zuu J, Muchingami I, Mashingaidze RT, Midzi V (2013b) Modelling the subsurface geology and groundwater occurrence of the Matsheumhlope low yielding aquifer in Bulawayo urban, Zimbabwe. J Geog Geol 5(3):158–175Google Scholar
  9. Clark L (1985) Groundwater abstraction from basement complex areas of Africa. Q J Eng Geol 18:25–34CrossRefGoogle Scholar
  10. Greenbaum D (1992) Structural influences on the occurrence of groundwater in SE Zimbabwe. Geol Soc Lond Spec Publ 66:77–85CrossRefGoogle Scholar
  11. Greenbaum D (1995) Structural influences on the occurrence of groundwater in SE Zimbabwe. British Geological Survey, Keyworth, UKGoogle Scholar
  12. Houston JFT, Lewis RT (1988) The Victoria Province drought relief project, II: borehole yield relationships. Ground Water 26(4):418–426CrossRefGoogle Scholar
  13. Howard WF, Karandu J (1992) Constraints on the exploitation of basement aquifers in East Africa: water balance implications and the role of the regolith. J Hydrol 139:183–196CrossRefGoogle Scholar
  14. Jones MJ (1985) The weathered zone aquifers of the basement complex areas of Africa. Q J Eng Geol 18:35–46CrossRefGoogle Scholar
  15. Koefeod O (1989) Geosounding principles, 1: resistivity sounding measurements. Elsevier, Amsterdam, 275 ppGoogle Scholar
  16. Kosinski WK, Kelly EW (1981) Geoelectric sounding for predicting aquifer properties. Ground Water 19:163–171CrossRefGoogle Scholar
  17. Love D, Zingoni E, Gandidzanwa P, Magadza C, Musiwa K (2006) Impacts on groundwater quality and water supply of the Epworth semi-formal settlement. In: Hranova R, Love D (eds) Diffuse pollution of water resources: principles and case studies. Taylor and Francis, Leiden, The NetherlandsGoogle Scholar
  18. Mangore E, Taigbenu AE (2004) Land-use impacts on the quality of groundwater in Bulawayo. Water SA 30(4):453–464CrossRefGoogle Scholar
  19. Martinelli E, Hubert GL (1985) Hydrogeology: a report to the Ministry of Energy and Water Resources and Development. National Master Plan for rural water supply and sanitation, vol 2. Interconsult Norad, Oslo, Norway, pp 109–114Google Scholar
  20. Mazac O, Kelly WE, Landa I (1985) A hydrogeophysical model for relations between electrical and hydraulic properties of aquifers. J Hydrol 79:1–19CrossRefGoogle Scholar
  21. Muchingami I, Hlatywayo JD, Nel JM, Chuma C (2012) Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer. J Phys Chem Earth 50–52:44–51CrossRefGoogle Scholar
  22. Ndlovu S, Mpofu V, Manatsa D, Muchuweni E (2010) Mapping groundwater aquifers using dowsing, Slingram electromagnetic survey method and vertical electrical sounding jointly in the granite rock formation: a case of Matshetshe rural area in Zimbabwe. J Sustain Dev Africa 12(5):199–208Google Scholar
  23. PHHEP (2013) Rehabilitation of rural water points and participatory health and hygiene education. https://practicalaction.org/online-publications-1. Accessed 25 July 2018
  24. Raghunath HM (1987) Groundwater, 2nd edn. Wiley, New DehliGoogle Scholar
  25. Ranganai RT, King JG, Koosimile DI, Ngwisanyi TH (2003) Geophysical methods for groundwater resources assessment, development and pollution mapping and monitoring: examples from Botswana and Zimbabwe. 4th WATERNET/WARFSA annual symposium, Gaborone, Botswana, October 2003Google Scholar
  26. Richards RT, Troester JW, Martinez MI (1995) A comparison of electromagnetic techniques used in a reconnaissance of the ground-water resources under the coastal plain of Isla de Mona, Puerto Rico. Symposium on the Application of Geophysics to Environmental and Engineering Problems, Environment and Engineering Geophysical Society, Denver, CO, pp 251–259Google Scholar
  27. Sami K (2009) Groundwater exploration and development. The Basement Aquifers of Southern Africa: WRC report no. TT 428–09, Water Research Commission, Pretoria, South AfricaGoogle Scholar
  28. Schluter T (2006) Geological atlas of Africa. Springer, Heidelberg, GermanyGoogle Scholar
  29. Sri N, Singhal DC (1981) Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. J Hydrol 50:393–399CrossRefGoogle Scholar
  30. Sri N, Singhal DC (1985) Aquifer transmissivity of porous media from resistivity data. J Hydrol 82:143–153CrossRefGoogle Scholar
  31. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812CrossRefGoogle Scholar
  32. Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa. In: Wright EP, Burgess WG (eds) Hydrogeology of crystalline basement aquifers in Africa. Geol. Soc. Spec. Pub. no. 66, Geological Society, LondonGoogle Scholar
  33. Yadav GS, Abolfazli H (1998) Geoelectrical sounding and their relationship to hydraulic parameters in semiarid regions of Jalore, North-Western India. J Appl Geophys 39:35–51CrossRefGoogle Scholar
  34. Zohdy AAR (1969) Application of deep electrical soundings for groundwater exploration in Hawaii. Geophysics 34:584–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Innocent Muchingami
    • 1
    Email author
  • Constant Chuma
    • 1
  • Mervyn Gumbo
    • 1
  • Dumisani Hlatywayo
    • 1
  • Robin Mashingaidze
    • 1
  1. 1.Geophysics Research Group, Department of Applied PhysicsNational University of Science and TechnologyBulawayoZimbabwe

Personalised recommendations