Advertisement

Impact of hotel septic effluent on the Jinfoshan Karst aquifer, SW China

  • Pingheng Yang
  • Xiaoxing Ming
  • Chris Groves
  • Ting Sheng
Paper
  • 28 Downloads

Abstract

The karst aquifer of Jinfoshan Karst (JFK) in UNESCO’s South China Karst World Heritage Site was investigated. An artificial tracer test, geochemistry, and oxygen and hydrogen isotopes were employed to assess the impacts of effluent from the Jinfoshan Holiday Hotel (JHH), Chongqing, on the karst aquifer and its outlet, Shuifang spring (SFS). Most of the fluorescent dye (uranine) flushed into a JHH toilet was recovered at SFS, suggesting a strong hydraulic connection between JHH and SFS. The waters of SFS were of HCO3–Ca type, whereas the effluent had more complex hydrochemical characteristics. The effluent was characterized by higher mean δD and δ18O values. The slope of the δD–δ18O evaporation line for effluent was significantly lower than that of the local meteoric water line, indicating evaporation. Concentrations of major elements at SFS were below the threshold values of the Chinese Standard for Groundwater Quality. However, hydrogen and oxygen isotopic compositions of SFS waters were influenced by the effluent and mixing with water from diffuse sources within the aquifer. Low values of d-excess at SFS corresponded well to periods of high tourism activity (weekends and holidays), suggesting that declining d-excess probably signifies an increased release of contaminants from the hotel. The contribution of effluent to the discharge of the SFS was ~18%. Because of tourism activities and their production of wastewater, the results of this study may be relevant to other karst environments and World Heritage Sites throughout the world.

Keywords

Karst Septic effluent Tracer test  Stable isotopes China 

Impact de l’effluent d’une fosse septique d’un hôtel sur l’aquifère karstique de Jinfoshan, SO Chine

Résumé

L’aquifère karstique du Karst de Jinfoshan (JFK), au sein du site UNESCO du Karst de Chine du Sud inscrit au patrimoine mondial, a été étudié. Des essais de traçage artificiel, géochimiques et isotopiques (isotopes de l’oxygène et de l’hydrogène) ont été utilisés pour évaluer les impacts d’un effluent rejeté par l’Hôtel Holiday de Jinfoshan (HHJ), à Chongqing, sur l’aquifère karstique et son exutoire, la source Shuifang (SSF). La plus grande partie du traceur fluorescent (uranine) introduit dans une toilette du HHJ a été retrouvé à la source SSF, suggérant une forte connexion hydraulique entre HHJ et SSF. Les eaux de la SSF sont de type bicarbonaté calcique, alors que l’effluent a des caractéristiques hydrochimiques plus complexes. L’effluent est. caractérisé par des valeurs moyennes de δD et δ18O plus élevées. La pente de la droite d’évaporation δD–δ18O pour l’effluent est. significativement plus faible que celle de la droite de l’eau météorique locale, indiquant une évaporation. Les concentrations en éléments majeurs de la SSF sont en-dessous des valeurs-seuil de la Norme Chinoise pour la Qualité des Eaux souterraines. Cependant, les compositions isotopiques de l’hydrogène et de l’oxygène des eaux de la SSF sont influencées par l’effluent, et un mélange avec de l’eau de différentes origines au sein de l’aquifère. Les faibles valeurs de l’excès en deutérium à la SSF correspondent bien aux périodes de forte activité touristique (weekends et vacances), ce qui suggère que la diminution de l’excès en deutérium est. le signe d’un largage accru des contaminants en provenance de l’hôtel. La contribution de l’effluent au débit de la SSF est. d’environ 18%. Compte-tenu des activités touristiques et de la production d’eaux résiduaires, les résultats de cette étude peuvent être appliqués à travers le monde à d’autres environnements karstiques dont des sites classés au patrimoine mondial.

Impacto del efluente séptico de un hotel en el acuífero kárstico de Jinfoshan, SO China

Resumen

Se investigó el acuífero kárstico de Jinfoshan Karst (JFK) en el sitio del Patrimonio Mundial de Karst de la UNESCO, en el sur de China. Se empleó una prueba de trazador artificial, geoquímica e isótopos de oxígeno e hidrógeno para evaluar los impactos de los efluentes del Jinfoshan Holiday Hotel (JHH), Chongqing, en el acuífero kárstico y en la salida, Shuifang spring (SFS). La mayor parte del colorante fluorescente (uranina) que se descargó en un inodoro del JHH se recuperó en el SFS, lo que sugiere una fuerte conexión hidráulica entre el JHH y el SFS. Las aguas del SFS eran de tipo HCO3–Ca, mientras que el efluente tenía características hidroquímicas más complejas. El efluente se caracterizó por valores medios más altos de δD y δ18O. La pendiente de la línea de evaporación del δD–δ18O para el efluente fue significativamente más baja que la de la línea de agua meteórica local, lo que indica la evaporación. Las concentraciones de los elementos principales en SFS estaban por debajo de los valores del umbral de la norma china para la calidad del agua subterránea. Sin embargo, las composiciones isotópicas de hidrógeno y oxígeno de las aguas del SFS se vieron influenciadas por el efluente y se mezclaron con agua de fuentes difusas dentro del acuífero. Los bajos valores de excesos de d en SFS correspondieron bien a los períodos de alta actividad turística (fines de semana y días festivos), lo que sugiere que la disminución del exceso de d probablemente signifique una mayor liberación de contaminantes del hotel. La contribución del efluente a la descarga del SFS fue de ~18%. Debido a las actividades turísticas y su producción de aguas residuales, los resultados de este estudio pueden ser relevantes para otros entornos kársticos y Sitios de Patrimonio Mundial en todo el mundo.

酒店化粪池污水影响下的中国西南地区金佛山岩溶含水层研究

摘要

论文研究了联合国教科文组织世界遗产地“中国南方喀斯特”重庆金佛山的岩溶含水层。利用示踪试验、地球化学和氢氧同位素等手段,分析了金佛山假日酒店化粪池污水对下伏岩溶含水层及其排泄口水房泉的影响。冲入酒店厕所的荧光素钠示踪剂大部分在水房泉得以回收,表明酒店和水房泉之间存在很强的水力联系。水房泉样品的水化学为HCO3–Ca型,而污水的水化学类型较为复杂。污水样品有着较高的δD、δ18O值,其蒸发线斜率远低于当地大气降水线,说明污水存在蒸发。水房泉样品的主要元素浓度未超过中国地下水质标准的警戒限。然而,水房泉样品的氢氧同位素组成受到污水和含水层扩散流地下水混合的共同影响。水房泉样品中过量氘的低值与高强度的旅游活动(周末和节假日)有着较好的对应关系,说明过量氘值的降低可能意味着酒店排污量的增加。经过计算,污水对水房泉流量的贡献率约为18%。由于旅游活动会产生污废水,本文的研究结果对其他岩溶区和世界遗产地的管理可能有参考借鉴意义。

Impacto do efluente séptico hoteleiro na aquífero cárstico de Jinfoshan, SO China

Resumo

O aquífero cárstico de Jinfoshan (JFK) situado no Karst World Heritage do Sul da China, e patrimônio Mundial da UNESCO, foi investigado. Para avaliar os impactos no aquífero cárstico e a sua ressurgência dos efluentes do Hotel Jinfoshan Holiday de Chongqing (JHH) em sua saída na nascente Shuifan (SFS) foram utilizados um teste de traçador artificial, geoquímica, e isótopos de oxigênio e hidrogênio. A maior parte do corante fluorescente (uranina) injetado em um vaso sanitário do JHH foi recuperado na SFS, sugerindo uma forte conexão hidráulica entre JHH e SFS. As águas do SFS foram do tipo HCO3–Ca, enquanto o efluente apresentou características hidroquímicas mais complexas. O efluente foi caracterizado por maiores valores médios de δD e δ18O. A inclinação de reta da linha de evaporação δD – δ18O foi significativamente menor que a da linha de água meteórica local, indicando evaporação. As concentrações dos elementos maiores na SFS estavam abaixo dos valores limite do Padrão Chinês para Qualidade das Águas Subterrâneas. No entanto, as composições isotópicas de hidrogênio e oxigênio das águas SFS foram influenciadas pelo efluente e pela mistura com águas de diferentes fontes difusas dentro do aquífero. Valores baixos de d-excess no SFS se correlacionaram bem com períodos de alta afluência turística (fins de semana e feriados), sugerindo que o declínio do d-excess implica em um maior aporte de contaminantes do hotel. A contribuição do efluente para a descarga do SFS foi de ~18%. Os resultados deste estudo sobre as atividades turísticas e de produção de águas residuais podem ser relevantes para outros ambientes cársticos em outros locais do mundo pertencentes ao Patrimônio Mundial.

Notes

Acknowledgements

The authors express gratitude to Guowen Xie, Zhengliang Yu, Feng Chen, Zhaojun Zhan, Juan Ren, Haiyue Zhang, and Zheyu Ma, for their help in the field sampling and laboratory work.

Funding information

This work was supported by the National Key Technology R&D Program of China (2016YFC050230206, 2011BAC09B01), National Natural Science Foundation of China (41103068), and the Fundamental Research Funds for the Central Universities (XDJK2018AB002, SWU116087, and XDJK2017B13), and the China Scholarship Council.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Amiel RB, Grodek T, Frumkin A (2010) Characterization of the hydrogeology of the sacred Gihon Spring, Jerusalem: a deteriorating urban karst spring. Hydrogeol J 18(6):1465–1479.  https://doi.org/10.1007/s10040-010-0600-6 CrossRefGoogle Scholar
  2. Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14(8):1341–1355.  https://doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.3.CO;2-Z CrossRefGoogle Scholar
  3. Bar-Matthews M, Ayalon A, Matthews A, Sass E, Halicz L (1996) Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semiarid regions. Geochim Cosmochim Acta 60(2):337–347.  https://doi.org/10.1016/0016-7037(95)00395-9 CrossRefGoogle Scholar
  4. Benetti M, Reverdin G, Pierre C, Merlivat L, Risi C, Steen-Larsen HC, Vimeux F (2014) Deuterium excess in marine water vapor: dependency on relative humidity and surface wind speed during evaporation. J Geophys Res Atmos 119(2):584–593.  https://doi.org/10.1002/2013jd020535 CrossRefGoogle Scholar
  5. Bodhankar N, Chatterjee B (1994) Pollution of limestone aquifer due to urban waste–disposal around Raipur, Madhya-Pradesh, India. Environ Geol 23(3):209–213.  https://doi.org/10.1007/bf00771790 CrossRefGoogle Scholar
  6. Carlson PE, Miller NR, Banner JL, Breecker DO, Casteel RC (2018) The potential of near-entrance stalagmites as high-resolution terrestrial paleoclimate proxies: application of isotope and trace-element geochemistry to seasonally-resolved chronology. Geochim Cosmochim Acta 235:55–75.  https://doi.org/10.1016/j.gca.2018.04.036 CrossRefGoogle Scholar
  7. Carroll S, Goonetilleke A (2005) Assessment of high density of onsite wastewater treatment systems on a shallow groundwater coastal aquifer using PCA. Environmetrics 16(3):257–274.  https://doi.org/10.1002/Env.698 CrossRefGoogle Scholar
  8. Chen C, Li T (2018) Geochemical characteristics of cave drip water respond to ENSO based on a 6–year monitoring work in Yangkou Cave, Southwest China. J Hydrol 516:896–907.  https://doi.org/10.1016/j.jhydrol.2018.04.061 CrossRefGoogle Scholar
  9. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703.  https://doi.org/10.1126/science.133.3465.1702 CrossRefGoogle Scholar
  10. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468.  https://doi.org/10.1111/j.2153-3490.1964.tb00181.x10.1111/j.2153-3490.1964.tb00181.x CrossRefGoogle Scholar
  11. Dodgen LK, Kelly WR, Panno SV, Taylor SJ, Armstrong DL, Wiles KN, Zhang Y, Zheng W (2017) Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters. Sci Total Environ 578:281–289.  https://doi.org/10.1016/j.scitotenv.2016.10.103 CrossRefGoogle Scholar
  12. Duque C, López-Chicano M, Calvache ML, Martín-Rosales W, Gómez-Fontalva JM, Crespo F (2011) Recharge sources and hydrogeological effects of irrigation and an influent river identified by stable isotopes in the Motril-Salobrena aquifer (southern Spain). Hydrol Process 25(14):2261–2274.  https://doi.org/10.1002/hyp.799010.1002/hyp.7990 CrossRefGoogle Scholar
  13. Ekmekci M (2005) Pesticide and nutrient contamination in the Kestel Polje-Kirkgoz karst springs, southern Turkey. Environ Geol 49(1):19–29.  https://doi.org/10.1007/s00254-005-0022-2 CrossRefGoogle Scholar
  14. Field MS, Leij FJ (2012) Solute transport in solution conduits exhibiting multi-peaked breakthrough curves. J Hydrol 440–441:26–35.  https://doi.org/10.1016/j.jhydrol.2012.03.018 CrossRefGoogle Scholar
  15. Florea LJ, McGee DK (2010) Stable isotopic and geochemical variability within shallow groundwater beneath a hardwood hammock and surface water in an adjoining slough (Everglades National Park, Florida, USA). Isot Environ Health Stud 46(3):190–209.  https://doi.org/10.1080/10256016.2010.494770 CrossRefGoogle Scholar
  16. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology, Wiley, Chichester, UKCrossRefGoogle Scholar
  17. Gat J (2010) Isotope hydrology: a study of the water cycle. Imperial College Press, LondonGoogle Scholar
  18. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2017) Standard for groundwater quality (GB/T 14848–2017) (in Chinese without English abstract). General Administration of Quality Supervision, Inspection and Quarantine, Beijing, ChinaGoogle Scholar
  19. Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45(1):36–45.  https://doi.org/10.1111/j.1745-6584.2006.00261.x CrossRefGoogle Scholar
  20. Ghobadi MH, Taheri M, Taheri K (2017) Municipal solid waste landfill siting by using analytical hierarchy process (AHP) and a proposed karst vulnerability index in Ravansar County, west of Iran. Environ Earth Sci 76:78.  https://doi.org/10.1007/s12665-017-6392-4 CrossRefGoogle Scholar
  21. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564.  https://doi.org/10.1007/s10040-003-0291-3 CrossRefGoogle Scholar
  22. Goldscheider N (2008) A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeol J 16:1311–1317.  https://doi.org/10.1007/s10040-008-0307-0 CrossRefGoogle Scholar
  23. Goldscheider N, Hötzl H, Käss W, Ufrecht W (2003) Combined tracer tests in the karst aquifer of the artesian mineral springs of Stuttgart, Germany. Environ Geol 43(8):922–929.  https://doi.org/10.1007/s00254-002-0714-9 CrossRefGoogle Scholar
  24. Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37(1):27–40.  https://doi.org/10.5038/1827-806X.37.1.3 CrossRefGoogle Scholar
  25. Gonfiantini R, Roche M, Olivry J, Fontes J, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181(1–4):147–167.  https://doi.org/10.1016/S0009-2541(01)00279-0 CrossRefGoogle Scholar
  26. Gong X, Chen Z, Luo Z (2014) Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China. Environ Monit Assess 186(12):9101–9116.  https://doi.org/10.1007/s10661-014-4069-y CrossRefGoogle Scholar
  27. Grimmeisen F, Lehmann MF, Liesch T, Goeppert N, Klinger J, Zopfi J, Goldscheider N (2017) Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Sci Total Environ 583:202–213.  https://doi.org/10.1016/j.scitotenv.2017.01.054 CrossRefGoogle Scholar
  28. Guo X, Jiang G, Gong X, Yin J, Wu X (2015) Recharge processes on typical karst slopes implied by isotopic and hydrochemical indexes in Xiaoyan Cave, Guilin, China. J Hydrol 530:612–622.  https://doi.org/10.1016/j.jhydrol.2015.09.065 CrossRefGoogle Scholar
  29. Huang T, Pang Z (2012) The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River basin, NW China. Appl Geochem 27(12):2382–2388.  https://doi.org/10.1016/j.apgeochem.2012.08.015 CrossRefGoogle Scholar
  30. Huth AK, Leydecker A, Sickman JO, Bales RC (2004) A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California. Hydrol Process 18(9):1721–1733.  https://doi.org/10.1002/Hyp.1414 CrossRefGoogle Scholar
  31. Iverson G, O’Driscoll MA, Humphrey CP, Manda AK, Anderson-Evans E (2015) Wastewater nitrogen contributions to coastal plain watersheds, NC, USA. Water Air Soil Pollut 226(10):325.  https://doi.org/10.1007/S11270-015-2574-4 CrossRefGoogle Scholar
  32. Jiang Y, Zhang C, Yuan D, Zhang G, He R (2008) Impact of land use change on groundwater quality in a typical karst watershed of Southwest China: a case study of the Xiaojiang watershed, Yunnan Province. Hydrogeol J 16(4):727–735.  https://doi.org/10.1007/s10040-007-0259-9 CrossRefGoogle Scholar
  33. Jiang Y, Wu Y, Yuan D (2009) Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong Underground River system in Yunan, China. Environ Sci Technol 43(20):7676–7683.  https://doi.org/10.1021/es901602t CrossRefGoogle Scholar
  34. Jiang Y, Hu Y, Schirmer M (2013) Biogeochemical controls on daily cycling of hydrochemistry and δ13C of dissolved inorganic carbon in a karst spring-fed pool. J Hydrol 478:157–168.  https://doi.org/10.1016/j.jhydrol.2012.12.001 CrossRefGoogle Scholar
  35. Jin L, Siegel DI, Lautz LK, Lu Z (2012) Identifying streamflow sources during spring snowmelt using water chemistry and isotopic composition in semi-arid mountain streams. J Hydrol 470–471:289–301.  https://doi.org/10.1016/j.jhydrol.2012.09.009 CrossRefGoogle Scholar
  36. Katz BG, Griffin DW, McMahon PB, Harden HS, Wade E, Hicks R, Chanton JP (2010) Fate of effluent-borne contaminants beneath septic tank drainfields overlying a karst aquifer. J Environ Qual 39:1181–1195.  https://doi.org/10.2134/Jeq2009.0244 CrossRefGoogle Scholar
  37. Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505:47–64.  https://doi.org/10.1016/j.jhydrol.2013.09.006 CrossRefGoogle Scholar
  38. Kogovšek J, Petrič M (2013) Increase of vulnerability of karst aquifers due to leakage from landfills. Environ Earth Sci 70(2):901–912.  https://doi.org/10.1007/s12665-012-2180-3 CrossRefGoogle Scholar
  39. Larssen T, Carmichael GR (2000) Acid rain and acidification in China: the importance of base cation deposition. Environ Pollut 110(1):89–102.  https://doi.org/10.1016/S0269-7491(99)00279-1 CrossRefGoogle Scholar
  40. Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H, Duan L, Seip HM, Vogt RD, Mulder J, Shao M, Wang Y, Shang H, Zhang X, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Li Q, Zhao D, Xiang R, Xiao J, Luo J (2006) Acid rain in China. Environ Sci Technol 40(2):418–425.  https://doi.org/10.1021/Es0626133 CrossRefGoogle Scholar
  41. Lauber U, Goldscheider N (2014) Use of artificial and natural tracers to assess groundwater transit–time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol J 22(8):1807–1824.  https://doi.org/10.1007/s10040-014-1173-6 CrossRefGoogle Scholar
  42. Laudon H, Hemond HF, Krouse R, Bishop KH (2002) Oxygen 18 fractionation during snowmelt: implications for spring flood hydrograph separation. Water Resour Res 38(11):40–41–41–10.  https://doi.org/10.1029/2002wr001510 CrossRefGoogle Scholar
  43. Lettingue M (2007) Vulnerability and risk mapping, tracer tests and microbiological monitoring to assess the human impact on an UNESCO world heritage candidate site, the Jinfo karst plateau, China. MSc Thesis, Université de Neuchâtel, Neuchâtel, FranceGoogle Scholar
  44. Magal E, Arbel Y, Caspi S, Glazman H, Greenbaum N, Yechieli Y (2013) Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel. J Contam Hydrol 145:26–36.  https://doi.org/10.1016/j.jconhyd.2012.10.010 CrossRefGoogle Scholar
  45. Mahler B, Massei N (2007) Anthropogenic contaminants as tracers in an urbanizing karst aquifer. J Contam Hydrol 91(1–2):81–106.  https://doi.org/10.1016/j.jconhyd.2006.08.010 CrossRefGoogle Scholar
  46. Maurya AS, Shah M, Deshpande RD, Bhardwaj RM, Prasad A, Gupta SK (2011) Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrol Process 25(10):1521–1530.  https://doi.org/10.1002/Hyp.7912 CrossRefGoogle Scholar
  47. Mellander PE, Jordan P, Wall DP, Melland AR, Meehan R, Kelly C, Shortle G (2012) Delivery and impact bypass in a karst aquifer with high phosphorus source and pathway potential. Water Res 46(7):2225–2236.  https://doi.org/10.1016/j.watres.2012.01.048 CrossRefGoogle Scholar
  48. Milenic D, Milankovic D, Petric M, Savic N, Vranjes A (2014) Integrated management of karstic waters: a case study of the Zlatibor Mountain Massif, Serbia. Global NEST J 16(4):717–731CrossRefGoogle Scholar
  49. Mook WG (2000) Environmental isotopes in the hydrological cycle: principles and applications. UNESCO, ParisGoogle Scholar
  50. Pape JR, Banner JL, Mack LE, Musgrove M, Guilfoyle A (2010) Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. J Hydrol 385(1–4):203–215.  https://doi.org/10.1016/j.jhydrol.2010.02.021 CrossRefGoogle Scholar
  51. Pei YS, Luan ZK, Barber C, Williamson D (2003) Assessment of the environmental impact of artificial effluent lagoon in Jiayuguan City of China. J Environ Sci-China 15(4):525–530.  https://doi.org/10.1001/0742(2003)04-0525-06 CrossRefGoogle Scholar
  52. Pronk M, Goldscheider N, Zopfi J (2007) Particle–size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environ Sci Technol 41(24):8400–8405.  https://doi.org/10.1021/es071976f CrossRefGoogle Scholar
  53. Rapti-Caputo D, Martinelli G (2009) The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy). Hydrogeol J 17(2):467–480.  https://doi.org/10.1007/s10040-008-0370-6 CrossRefGoogle Scholar
  54. Schiavo MA, Hauser S, Povinec PP (2009) Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. J Hydrol 364(1–2):40–49.  https://doi.org/10.1016/j.jhydrol.2008.10.005 CrossRefGoogle Scholar
  55. Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190.  https://doi.org/10.1016/j.jhydrol.2013.08.009 CrossRefGoogle Scholar
  56. Schnegg PA, Costa R (2002) Tracer tests made easier with field fluorometers. Bull Hydrogeol 20(5):89–91Google Scholar
  57. State Bureau of Technical Supervision of China (2008) Method for examination of drinking natural mineral water (GB/T8538–2008) (in Chinese without English abstract). State Bureau of Technical Supervision of China, BeijingGoogle Scholar
  58. Tang D, Lydersen E, Seip HM, Angell V, Eilertsen O, Larssen T, Liu X, Kong G, Mulder J, Semb A, Solberg S, Torseth K, Vogt RD, Xiao J, Zhao D (2001) Integrated monitoring program on acidification of Chinese terrestrial systems (impacts): a Chinese-Norwegian cooperation project. Water Air Soil Poll 130(1–4):1073–1078.  https://doi.org/10.1023/A:1013982300245 CrossRefGoogle Scholar
  59. Toor, GS, Toor M, Obrez T (2011) Onsite sewage treatment and disposal systems: an overview, Institute of Food and Agric Sci, University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/ss549. Accessed July 23 2018
  60. Turner KW, Edwards TWD, Wolfe BB (2014) Short communication characterising runoff generation processes in a lake-rich thermokarst landscape (Old Crow Flats, Yukon, Canada) using δ18O, δ2H and d-excess measurements. Permafrost Periglac 25(1):53–59.  https://doi.org/10.1002/ppp.1802 CrossRefGoogle Scholar
  61. Umezawa Y, Hosono T, Onodera S, Siringan F, Buapeng S, Delinom R, Yoshimizu C, Tayasu I, Nagata T, Taniguchi M (2009) Erratum to “Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities”. Sci Total Environ 407(9):3219–3231.  https://doi.org/10.1016/j.scitotenv.2009.01.047 CrossRefGoogle Scholar
  62. UNESCO (2014a) Decision: 38 COM 8B.9, South China Karst (China) (extension). http://whc.unesco.org/en/decisions/6094. Accessed July 23, 2018
  63. UNESCO (2014b) WHC-14/38.COM/16: report of the decisions adopted by the World Heritage Committee at its 38th session (Doha, 2014). http://whc.unesco.org/en/documents/131277/,%20WHC-14/38.COM/16. Accessed July 23, 2018
  64. USEPA (2002) Onsite wastewater treatment systems manual (EPA/625/R-00/008). Office of Water, Office of Research and Development, USEPA, Washington, DCGoogle Scholar
  65. Vanderzalm JL, Jeuken BM, Wischusen JDH, Pavelic P, Le Gal La Salle C, Knapton A, Dillon PJ (2011) Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia. J Hydrol 397(1–2):71–82.  https://doi.org/10.1016/j.jhydrol.2010.11.035 CrossRefGoogle Scholar
  66. Wang H, Li T, Yuan N, Li J (2014) Environmental signification and characteristics of δD and δ18O variation in drip water in Yangkou Cave, Chongqing China (in Chinese without English abstract). Carsolog Sin 33:146–155Google Scholar
  67. Wang S (2011) The new method of engineering geology (in Chinese without English abstract). Yinshengyingxiang Press, ChinaGoogle Scholar
  68. Wu Y, Jiang Y, Yuan D, Li L (2008) Modeling hydrological responses of karst spring to storm events: example of the Shuifang spring (Jinfo Mt., Chongqing, China). Environ Geol 55(7):1545–1553.  https://doi.org/10.1007/s00254-007-1105z CrossRefGoogle Scholar
  69. Xiao K (2015) Analysis of hydrogeochemistry and hydrogen and oxygen isotopes of surface surface water and groundwater in Jinfo Mt (in Chinese with English abstract). MSc Thesis, Southwest University, Chongqing, ChinaGoogle Scholar
  70. Yang M, Hens L, Ou X, De Wulf R (2009) Tourism: an alternative to development? Mt Res Dev 29(1):75–81.  https://doi.org/10.1659/Mrd.1051 CrossRefGoogle Scholar
  71. Yang P, Yuan D, Yuan W, Kuang Y, Jia P, He Q (2010) Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chin Sci Bull 55(14):1412–1422.  https://doi.org/10.1007/s11434-010-0083-9 CrossRefGoogle Scholar
  72. Yang P, Yuan D, Ye X, Xie S, Chen X, Liu Z (2013) Sources and migration path of chemical compositions in a karst groundwater system during rainfall events. Chin Sci Bull 58(20):2488–2496.  https://doi.org/10.1007/s11434-013-5762-x CrossRefGoogle Scholar
  73. Zang H, Zheng X, Qin Z, Jia Z (2015) A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China. Isot Environ Health Stud 51(2):271–284.  https://doi.org/10.1080/10256016.2015.987275 CrossRefGoogle Scholar
  74. Zhu Y, Ye M, Roeder E, Hicks RW, Shi L, Yang J (2016) Estimating ammonium and nitrate load from septic systems to surface water bodies within ArcGIS environments. J Hydrol 532:177–192.  https://doi.org/10.1016/j.jhydrol.2015.11.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pingheng Yang
    • 1
    • 2
    • 3
  • Xiaoxing Ming
    • 1
  • Chris Groves
    • 3
  • Ting Sheng
    • 1
  1. 1.Chongqing Key Laboratory of Karst Environment, School of Geographical SciencesSouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and GeophysicsChinese Academy SciencesBeijingChina
  3. 3.Crawford Hydrology Laboratory, Department of Geography and GeologyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations