Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 161–170 | Cite as

Salt dissolution and permeability in the Western Canada Sedimentary Basin

  • Blake Woroniuk
  • Kristl Tipton
  • Stephen E. Grasby
  • Jennifer C. McIntosh
  • Grant FergusonEmail author
Report

Abstract

Extensive dissolution of evaporites has occurred in the Williston Basin, Canada, but it is unclear what effect this has had on bulk permeability. The bulk of this dissolution has occurred from the Prairie Evaporite Formation, which is predominantly halite and potash. However, minor evaporite beds and porosity infilling have also been removed from the overlying Dawson Bay and Souris River formations, which are predominantly carbonates. This study examines whether permeability values in the Dawson Bay and Souris River formations have been affected by dissolution, by analyzing 142 drillstem tests from those formations. For both the Dawson Bay and Souris River formations, the highest permeabilities were found in areas where halite dissolution had occurred. However, the mean permeabilities were not statistically different in areas of halite dissolution compared to those containing connate water. Subsequent precipitation of anhydrite is known to have clogged pore spaces and fractures in some instances. Geochemical relationships found here support this idea but there is no statistically significant relationship between anhydrite saturation and permeability. Geomechanical effects, notably closure of fractures due to collapse, could be a mitigating factor. The results indicate that coupling dissolution and precipitation to changes in permeability in regional flow models remains a significant challenge.

Keywords

Hydraulic properties Hydrochemistry Canada Carbonate rocks Evaporites 

Dissolution saline et perméabilité dans le Bassin Sédimentaire de l‘Ouest Canada

Résumé

Une dissolution d’évaporites de grande envergure s’est produite dans le Bassin de Williston, au Canada, mais son incidence sur la perméabilité en général n’est pas évidente. La majeure partie de la dissolution a eu lieu à partir de la Formation Evaporitique Prairie qui est à dominante de halite et de sylvinite. Cependant, des petits lits d’évaporite et un remplissage de la porosité ont aussi été exportés depuis les formations surincombantes de Dawson Bay et de Souris River qui sont à dominante carbonatée. La présente étude examine si les valeurs de perméabilité dans les formations de Dawson Bay et de Souris River ont été affectées par la dissolution, grâce à l’analyse de 142 essais aux tiges pratiquées dans ces formations. Pour la formation de Dawson Bay comme pour celle de Souris River, les perméabilités les plus élevées ont été rencontrées dans les zones où a eu lieu la dissolution de halite. Cependant, les perméabilités moyennes n’ont pas été statistiquement différentes dans les zones de dissolution de la halite et dans celles contenant de l’eau connée. La précipitation ultérieure de l’anhydrite est reconnue pour avoir fermé des espaces poreux et dans quelques cas des fractures. Les relations géochimiques rencontrées ici confortent cette idée mais il n’y a pas de relation statistiquement significative entre la saturation de l’anhydrite et la perméabilité. Les effets géo-mécaniques, notamment la fermeture des fractures par affaissement, pourrait avoir été un facteur d’atténuation. Ces résultats montrent que le couplage de la dissolution et de la précipitation en vue de modifications de la perméabilité dans les modèles d’écoulement régionaux reste un défi de taille.

Disolución de Sal y permeabilidad en la Western Canada Sedimentary Basin

Resumen

Se ha producido una amplia disolución de evaporitas en la cuenca de Williston, Canadá, pero no está claro qué efecto ha tenido ello sobre la permeabilidad global. La mayor parte de esta disolución se produjo a partir de la Formación Prairie Evaporite, que es predominantemente halita y carbonato de potasio. Sin embargo, también se han eliminado capas menores de evaporita y rellenos de la porosidad de las formaciones suprayacentes de Dawson Bay y Souris River, que son predominantemente carbonáticas. Este estudio examina si los valores de la permeabilidad en las formaciones Dawson Bay y Souris River se han visto afectados por la disolución, mediante el análisis de 142 pruebas de barras de perforación de esas formaciones. Para las formaciones Dawson Bay y Souris River, las permeabilidades más altas se encontraron en áreas donde se había producido la disolución de halita. Sin embargo, las permeabilidades promedio no fueron estadísticamente diferentes en las áreas de disolución de halita en comparación con las que contienen agua connata. Se sabe que la precipitación posterior de anhidrita ha obstruido en algunos casos espacios de poros y fracturas. Las relaciones geoquímicas encontradas aquí respaldan esta idea, pero no existe una relación estadísticamente significativa entre la saturación de la anhidrita y la permeabilidad. Los efectos geomecánicos, especialmente el cierre de fracturas debido al colapso, podrían ser un factor atenuante. Los resultados indican que el acoplamiento de la disolución y la precipitación a los cambios en la permeabilidad en los modelos de flujo regionales sigue siendo un desafío significativo.

加拿大西部沉积盆地的盐分溶解和渗透性

摘要

在加拿大Williston盆地,蒸发岩大量溶解,但不清楚溶解对体积平均渗透性有什么样的影响。大多数溶解出现在大草原蒸发岩地层,蒸发岩地层猪油是岩盐和碳酸钾。然而,小的蒸发岩层和孔隙填充物也被从上覆的、主要为碳酸盐的Dawson Bay 和 Souris River 地层中溶解出。通过分析Dawson Bay 和 Souris River 地层142个钻杆试验结果,本研究检查了Dawson Bay 和 Souris River地层渗透性值是否受到了溶解的影响。发现Dawson Bay 地层和 Souris River地层渗透性最高的地方就在岩盐溶解的地方。然而,在岩盐溶解的地方,相比于包含原生水的地方,平均渗透性统计上并没有什么不同。在某些情况下,随后的硬石膏沉淀会堵塞孔隙空间和断裂。发现这里的地球化学关系支持整个观点,但在硬石膏饱和和渗透性之间没有统计学上的重大的关系。岩土力学影响,即,由于崩塌造成的断裂明显闭合可能是一个缓解因素。结果表明,在区域水流模型中,溶解和沉淀对渗透性的变化仍然是一个重要的挑战。

Dissolução Salina e permeabilidade na Bacia Sedimentar do Canadá Ocidental

Resumo

Vasta dissolução de evaporitos têm ocorrido na Bacia Williston, Canadá, entretanto não está claro qual o efeito gerado na permeabilidade total. Grande parte dessa dissolução tem ocorrido a partir da Formação Evaporítica das Prairies, predominantemente composta for halita e potassa. Entretanto, camadas evaporíticas menos pronunciadas e preenchimento de porosidade também têm sido removidas a partir das formações Dowson Bay e Souris River sobrejacentes, compostas predominantemente por carbonatos. Este estudo examina se as permeabilidades das formações Dowson Bay e Souris River têm sido afetadas pela dissolução através da análise de 142 testes drillstem destas formações. Para ambas as formações, as maiores permeabilidades foram encontradas em áreas de ocorrência de dissolução de halita. Entretanto, as permeabilidades médias não se apresentaram estatísticamente diferentes em áreas de dissolução de halita comparadas com áreas contendo água conata. Precipitação subsequente de anidrita é reconhecida por ter colmatado poros e fraturas em alguns casos. As relações geoquímicas aqui encontradas corroboram com essa evidência, porém não há relação estatisticamente significativa entre a saturação de anidrita e a permeabilidade. Efeitos geomecânicos, notavelmente o fechamento de fraturas por colapso, podem configurar um fator de atenuação. Os resultados indicam que a articulação de dissolução e precipitação em relação às variações de permebilidade em modelos de fluxo regionais permanece um desafio significativo.

Notes

Funding Information

This research was supported by Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development grant CRDPJ 500161-16, a grant from the International Minerals Innovation Institute and additional funding from Nutrien, the Mosaic Corporation and BHP.

Supplementary material

10040_2018_1871_MOESM1_ESM.pdf (317 kb)
ESM 1 (PDF 317 kb)

References

  1. Anderson NL, Hinds RC (1997) Glacial loading and unloading: a possible cause of rock salt dissolution in the Western Canada Basin. Carbonates Evaporites 12:43CrossRefGoogle Scholar
  2. Anderson NL, Knapp R (1993) An overview of some of the large scale mechanisms of salt dissolution in western Canada. Geophysics 58:1375–1387CrossRefGoogle Scholar
  3. Bachu S (1995) Flow of variable-density formation water in deep sloping aquifers: review of methods of representation with case studies. J Hydrol 164:19–38CrossRefGoogle Scholar
  4. Bachu S, Hitchon B (1996) Regional-scale flow of formation waters in the Williston Basin. AAPG Bull 80:248–264Google Scholar
  5. Black TJ (1997) Evaporite karst of northern lower Michigan. Carbonates Evaporites 12:81CrossRefGoogle Scholar
  6. Blondes MS, Gans KD, Thordsen JJ, Reidy ME, Thomas B, Engle M, Kharaka Y, Rowan E (2014) US Geological Survey National Produced Waters Geochemical Database, vol 2. USGS, Reston, VAGoogle Scholar
  7. Borah I (1992) Drill stem testing. In: Development geology reference manual. AAPG Methods Explor Ser 10, AAPG, Tulsa, OK, pp 131–139Google Scholar
  8. Bredehoeft JD (1965) The drill-stem test: the petroleum industry’s deep-well pumping test. Ground Water 3:31–36CrossRefGoogle Scholar
  9. Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. SPE Annual Fall Technical Conference and Exhibition, Society of Petroleum Engineers, Houston, TXGoogle Scholar
  10. Christiansen E (1967) Collapse structures near Saskatoon, Saskatchewan, Canada. Can J Earth Sci 4:757–767CrossRefGoogle Scholar
  11. Christiansen E (1971) Geology of the Crater Lake collapse structure in southeastern Saskatchewan. Can J Earth Sci 8:1505–1513Google Scholar
  12. Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990) Origin and evolution of formation waters, Alberta basin, Western Canada Sedimentary Basin. Chem Appl Geochem 5:375–395CrossRefGoogle Scholar
  13. de Marsily G, Ledoux E, Barbreau A, Margat J (1977) Nuclear waste disposal: can the geologist guarantee isolation? Science 197:519–527.  https://doi.org/10.1126/science.197.4303.519 CrossRefGoogle Scholar
  14. Drees M, Mossop G, Shetsen I (1994) Devonian Elk Point group of the Western Canada Sedimentary Basin. Geological atlas of the Western Canada Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, ABGoogle Scholar
  15. Drever JI (1988) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  16. Dunn CE (1982) Geology of the middle Devonian Dawson Bay Formation in the northern part of the Williston Basin. Williston Basin Symposium, Regina, SK, June 1987Google Scholar
  17. Ferguson G, Betcher RN, Grasby SE (2007) Hydrogeology of the Winnipeg formation in Manitoba, Canada. Hydrogeol J 15:573–587.  https://doi.org/10.1007/s10040-006-0130-4 CrossRefGoogle Scholar
  18. Ferguson G, McIntosh JC, Grasby SE, Hendry MJ, Jasechko S, Lindsay MBJ, Luijendijk E (2018) The persistence of brines in sedimentary basins. Geophys Res Lett 45(4)Google Scholar
  19. Garven G (1989) A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada Sedimentary Basin. Am J Sci 289:105–166CrossRefGoogle Scholar
  20. Gendzwill D, Martin N (1996) Flooding and loss of the Patience Lake potash mine. CIM Bull 89:62–73Google Scholar
  21. Gendzwill D, Stead D (1992) Rock mass characterization around Saskatchewan potash mine openings using geophysical techniques: a review. Can Geotech J 29:666–674CrossRefGoogle Scholar
  22. Gorrell H, Alderman G (1968) Elk Point Group saline basins of Alberta, Saskatchewan, and Manitoba. Can Geol Soc Am Spec Papers 88:291–318Google Scholar
  23. Grasby SE (2000) Saline spring geochemistry, west-central Manitoba. Report of activities 2000, Manitoba Geological Survey, Winnipeg, MB, pp 214–216Google Scholar
  24. Grasby SE, Osadetz K, Betcher RN, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28:635–638CrossRefGoogle Scholar
  25. Grasby SE, Betcher RN (2002) Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can J Earth Sci 39:1053–1063CrossRefGoogle Scholar
  26. Grasby SE, Chen Z (2005) Subglacial recharge into the Western Canada Sedimentary Basin: impact of Pleistocene glaciation on basin hydrodynamics. Geol Soc Am Bull 117:500–514CrossRefGoogle Scholar
  27. Grasby SE, Chen Z, Dewing K (2012) Formation water geochemistry of the Sverdrup Basin: implications for hydrocarbon development in the high Arctic. Appl Geochem 27:1623–1632CrossRefGoogle Scholar
  28. Gupta I, Wilson AM, Rostron BJ (2012) Cl/Br compositions as indicators of the origin of brines: hydrogeologic simulations of the Alberta Basin, Canada. Geol Soc Am Bull 124:200–212CrossRefGoogle Scholar
  29. Gupta I, Wilson AM, Rostron BJ (2015) Groundwater age, brine migration, and large-scale solute transport in the Alberta Basin, Canada. Geofluids.  https://doi.org/10.1111/gfl.12131
  30. Hanor JS (1994) Origin of saline fluids in sedimentary basins. Geol Soc Lond Spec Publ 78:151–174CrossRefGoogle Scholar
  31. Hendry MJ, Barbour SL, Novakowski K, Wassenaar LI (2013) Paleohydrogeology of the cretaceous sediments of the Williston Basin using stable isotopes of water. Water Resour Res 49:4580–4592CrossRefGoogle Scholar
  32. Hite RJ (1968) Salt deposits of the Paradox Basin, southeast Utah and southwest Colorado. Geol Soc Am Spec Pap 88:319–330Google Scholar
  33. Holter ME, Resources SDoM (1969) The Middle Devonian Prairie Evaporite of Saskatchewan Regina. Queen’s Printer, Regina, SKGoogle Scholar
  34. IHS Energy (2018) IHS accumap. Commercial database IHS Energy, Englewood, COGoogle Scholar
  35. Jensen G, Rostron B, Duke M, Holmden C (2006) Chemical profiles of formation waters from potash mine shafts. Saskatchewan Summ Invest 1:2006–2004Google Scholar
  36. Jiang L, Worden RH, Cai CF, Shen A, Crowley SF (2018) Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin, Northwest China. AAPG Bull 102:77–102CrossRefGoogle Scholar
  37. Johnson KS (1982) Dissolution of salt on the east flank of the Permian Basin in the southwestern USA. J Hydrol 54(1–3):75–93Google Scholar
  38. Johnson KS (1989) Development of the Wink Sink in West Texas, USA, due to salt dissolution and collapse. Environ Geol Water Sci 14:81–92CrossRefGoogle Scholar
  39. Kendall A (1976) Bedded halites in the Souris River formation (Devonian): potash mining district around Saskatoon. In: Survey SG (ed) Summary of investigations. Saskatchewan Ministry of Economy, Regina, SK, pp 84–86Google Scholar
  40. Kendall AC (2000) Compaction in halite-cemented carbonates: the Dawson Bay formation (middle Devonian) of Saskatchewan. Can Sedimentol 47:151–171CrossRefGoogle Scholar
  41. Kent D, Christopher J (1994) Geological history of the Williston Basin and Sweetgrass Arch. Geological atlas of the Western Canada Sedimentary Basin, Canadian Society of Petroleum Geologists and the Alberta Research Council, Calgary, AB, pp 421–429Google Scholar
  42. Lane DM (1964) Souris River Formation in southern Saskatchewan. Queen’s Printer, Regina, SKGoogle Scholar
  43. Lowenstein T, Timofeeff M (2008) Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids 8:77–92CrossRefGoogle Scholar
  44. McIntosh J, Garven G, Hanor J (2011) Impacts of Pleistocene glaciation on large-scale groundwater flow and salinity in the Michigan Basin. Geofluids 11:18–33CrossRefGoogle Scholar
  45. McTavish GJ, Vigrass LW (1987) Salt dissolution and tectonics, south-central Saskatchewan. Williston Basin Symposium, Regina, SK, June 1987Google Scholar
  46. Meijer Drees N (1986) Evaporitic deposits of western Canada. Geol Surv Can Pap 85–20:118Google Scholar
  47. Meijer Drees N (1994) Devonian Elk Point Group of the WCSB. Geologic Atlas of the Western Canada Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, AB, pp 129–148Google Scholar
  48. Melnik A (2012) Regional hydrogeology of southwestern Saskatchewan. MSc Thesis, University of Alberta, Edmonton, ABGoogle Scholar
  49. Palombi D (2008) Regional hydrogeological characterization of the northeastern margin in the Williston Basin. MSc Thesis, University of Alberta, Edmonton, ABGoogle Scholar
  50. Parkhurst DL, Appelo C (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Techniques Methods 6-A43Google Scholar
  51. Person M, Raffensperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modeling. Rev Geophys 34:61–87.  https://doi.org/10.1029/95RG03286 CrossRefGoogle Scholar
  52. Prugger FF, Prugger A (1991) Water problems in Saskatchewan potash mining: what can be learned from them. CIM Bull 84:58–66Google Scholar
  53. Ranganathan V, Hanor J (1987) A numerical model for the formation of saline waters due to diffusion of dissolved NaCl in subsiding sedimentary basins with evaporites. J Hydrol 92:97–120CrossRefGoogle Scholar
  54. Rostron B, Kelley L, Kreis L, Holmden C (2002) Economic potential of formation brines: interim results from the Saskatchewan brine sampling program. Summ Invest 2:2002–2004Google Scholar
  55. Smith DG, Pullen JR (1967) Hummingbird structure of Southeast Saskatchewan. Bull Can Petrol Geol 15:468–482Google Scholar
  56. Stearn CW, Shah DH (1990) Devonian (Givetian–Frasnian) stromatoporoids from the subsurface of Saskatchewan, Canada. Can J Earth Sci 27:1746–1756CrossRefGoogle Scholar
  57. Weisbrod N, Alon-Mordish C, Konen E, Yechieli Y (2012) Dynamic dissolution of halite rock during flow of diluted saline solutions. Geophys Res Lett 39.  https://doi.org/10.1029/2012GL051306
  58. Wittrup M, Kyser T (1990) The petrogenesis of brines in Devonian potash deposits of western Canada. Chem Geol 82:103–128CrossRefGoogle Scholar
  59. Worsley N, Fuzesy A (1979) The potash-bearing members of the Devonian Prairie Evaporite of southeastern Saskatchewan, south of the mining area. Econ Geol 74:377–388CrossRefGoogle Scholar
  60. Wright G, McMechan M, Potter D (1994) Structure and architecture of the Western Canada Sedimentary Basin. In: Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, AB, pp 25–40Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Blake Woroniuk
    • 1
  • Kristl Tipton
    • 1
  • Stephen E. Grasby
    • 2
  • Jennifer C. McIntosh
    • 3
  • Grant Ferguson
    • 1
    Email author
  1. 1.Department of Civil, Geological and Environmental EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Geological Survey of CanadaCalgaryCanada
  3. 3.Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations