Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 145–160 | Cite as

Hydrogeology of an arid endorheic basin (Tsagaan Els, Dornogobi, Mongolia): field data and conceptualization, three-dimensional groundwater modeling, and water budget

  • Pierre GrizardEmail author
  • Jean-Michel Schmitt
  • Patrick Goblet
Report
  • 101 Downloads

Abstract

The Tsagaan Els basin is a ~16,300 km2 endorheic basin located in the Gobi Desert in Mongolia. This Cretaceous sedimentary basin is crossed by the North Zuunbayan fault, which determines two partially connected hydrogeological sub-basins: Zuunbayan and Unegt. Two roll-front uranium ore deposits have been discovered in these sub-basins by Orano Mining and its subsidiary COGEGOBI LLC, and the regional aquifers have been surveyed for several years. Based on that knowledge, this study presents the regional hydrogeological functioning of this multi-layered aquifer system supported by a regional groundwater model. The latter was implemented with MODFLOW and calibrated through PEST using piezometric levels. Recharge rates were adjusted to between 0.6 and 3.1 mm/year. The resulting water budget indicates an important transfer of water from Unegt sub-basin toward Zuunbayan sub-basin, occurring at a few main springs located along the North Zuunbayan fault. Evaporation loss is potentially high during these transfers but the remaining water seeps through and later evaporates in the depression located at the center of Zuunbayan sub-basin, which is the terminal discharge playa of the entire basin. These results can be helpful for future water management plans.

Keywords

Mongolia Arid regions Groundwater recharge/water budget Numerical modeling Mining 

Hydrogéologie d’un bassin endoréique (Tsagaan Els, Dornogobie, Mongolie): acquisition de données et conceptualisation, modélisation d’écoulement en trois dimensions et bilan hydrique

Résumé

Le bassin de Tsagaan Els est un bassin endoréique d’environ 16,300 km2 situé dans le désert de Gobi en Mongolie. Ce bassin sédimentaire crétacé est traversé par la faille Nord-Zuunbayan qui délimite deux sous-bassins hydrogéologiques partiellement connectés: Unegt et Zuunbayan. Les programmes d’exploration menés par Orano Mining et sa filiale mongole, COGEGOBI LLC, ont permis d’y découvrir deux gisements d’uranium de type roll-front. Depuis cette découverte, de nombreuses données ont été acquises sur les aquifères régionaux. Cette étude s’appuie sur ces données pour présenter le fonctionnement hydrogéologique régional de ce système aquifère multicouche ainsi que le modèle numérique d’écoulement associé. Ce dernier a été développé sous MODFLOW et calibré à l’aide de PEST en se basant sur les niveaux piézométriques. Les taux de recharges ont été ajustés entre 0.6 et 3.1 mm/an. Le bilan hydrique résultant de ce modèle indique un transfert d’eau important du sous-bassin d’Unegt vers le sous-bassin de Zuunbayan au niveau de quelques sources situées le long de la faille Nord-Zuunbayan. Les pertes par évaporation durant ce transfert sont potentiellement élevées mais une partie s’infiltre tout de même puis se dirige vers la dépression topographique au centre du sous-bassin de Zuunbayan, qui est la zone d’exutoire final de l’ensemble du bassin. Les résultats de cette étude peuvent être utiles pour la gestion des ressources en eau de cette région.

Hidrogeología de una cuenca endorreica árida (Tsagaan Els, Dornogobi, Mongolia): datos de campo y conceptualización, modelos tridimensionales de aguas subterráneas y balance hídrico

Resumen

La cuenca Tsagaan Els es una cuenca endorreica de ~16,300 km2 ubicada en el desierto de Gobi en Mongolia. Esta cuenca sedimentaria del Cretácico está atravesada por la falla de North Zuunbayan, que determina dos subcuencas hidrogeológicas parcialmente conectadas: Zuunbayan y Unegt. Dos yacimientos de mineral de uranio de tipo roll-front han sido descubiertos en estas subcuencas por Orano Mining y su filial COGEGOBI LLC, y los acuíferos regionales han sido inspeccionados durante varios años. Con base en ese conocimiento, este estudio presenta el funcionamiento hidrogeológico regional de este sistema acuífero de múltiples capas respaldado por un modelo regional de aguas subterráneas. Este último se implementó con MODFLOW y se calibró a través de PEST utilizando niveles piezométricos. Las tasas de recarga se ajustaron entre 0.6 y 3.1 mm/año. El balance de agua resultante indica una importante transferencia de agua desde la subcuenca de Unegt hacia la subcuenca de Zuunbayan, que se produce en unos pocos manantiales principales ubicados a lo largo de la falla de North Zuunbayan. La pérdida de evaporación es potencialmente alta durante estas transferencias, pero el agua restante se filtra y luego se evapora en la depresión ubicada en el centro de la subcuenca de Zuunbayan, que es la playa de descarga terminal de toda la cuenca. Estos resultados pueden ser útiles para futuros planes de la gestión del agua.

一干旱内流盆地的水文地质状况(蒙古东戈壁省Tsagaan Els盆地):野外数据和概念化、三维地下水模拟和水平衡

摘要

Tsagaan Els盆地是一个内流盆地,位于蒙古戈壁滩,面积 大约16,300 km2。北宗巴彦断层穿过这个白垩纪沉积盆地,这个断层把盆地氛围两个部分相连的水文地质亚盆地:Zuunbayan 亚盆地和 Unegt亚盆地。Orano矿业公司及子公司COGEGOBI LLC在这两个亚盆地中发现了两个卷状铀矿床,对此地的区域含水层调查进行了好几年。基于这些调查成果,本研究展示了这个多层含水层系统的区域水文地质功能,展示的区域水文地质功能受到区域水文地质模型的支持。这个模型由MODFLOW来完成并采用测压水位通过PEST校准。补给量调整为0.6–3.1 mm/year.得出的水平衡表明, 有大量的水通过沿北宗巴彦断层的几个主要泉从Unegt亚盆地流向Zuunbayan 亚盆地。在水迁移期间蒸发损失量可能很大,但剩余的水入渗,随后在位于Zuunbayan 亚盆地的中心的洼地蒸发,这里是整个盆地的最终排泄干盐湖。这些研究成果可能有助于未来水管理规划。

Hidrogeologia de uma bacia endorreica árida (Tsagaan Els, Dornogobi, Mongólia): dados de campo e conceituação, modelagem tridimensional de águas subterrâneas, e balanço hídrico

Resumo

A bacia de Tsagaan Els é uma bacia endorreica de ~16,300 km2 localizada no deserto de Gobi na Mongólia. Esta bacia sedimentar cretácea é atravessada pela falha de North Zuunbayan, que determina duas subacias hidrogeológicas parcialmente conectadas: Zuunbayan e Unegt. Dois depósitos de minério de urânio foram descobertos nestas subacias pela Orano Mining e sua subsidiária COGEGOBI LLC, e os aquíferos regionais foram pesquisados durante vários anos. Baseado nesse conhecimento, este estudo apresenta o funcionamento hidrogeológico regional desse sistema aquífero de múltiplas camadas, por meio de um modelo regional de águas subterrâneas. Sendo este último implementado com MODFLOW e calibrado através do PEST utilizando níveis piezométricos. As taxas de recarga foram ajustadas para entre 0.6 e 3.1 mm/ano. O balanço hídrico resultante indica uma importante transferência de água da subacia da Unegt para a subacia de Zuunbayan, principalmente em algumas nascentes principais localizadas ao longo da falha de North Zuunbayan. A perda de evaporação é potencialmente alta durante essas transferências, mas a água remanescente se infiltra e depois evapora na depressão localizada no centro da subacia de Zuunbayan, que é uma playa de descarga terminal de toda a bacia. Esses resultados podem ser úteis para futuros planos de gerenciamento de água.

Notes

Acknowledgements

This work would not have been possible without the support of COGEGOBI’s hydrogeology team and access to its invaluable database.

Funding information

This research was supported by a CIFRE/ANRT doctoral grant No. 2014/0572.

Supplementary material

10040_2018_1868_MOESM1_ESM.pdf (4.5 mb)
ESM 1 (PDF 4601 kb)

References

  1. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in the upper Mississippi River basin. J Hydrol 227:21–40.  https://doi.org/10.1016/S0022-1694(99)00139-0 CrossRefGoogle Scholar
  2. Bachu S, Michael K (2002) Flow of variable-density formation water in deep sloping aquifers: minimizing the error in representation and analysis when using hydraulic-head distributions. J Hydrol 259:49–65.  https://doi.org/10.1016/S0022-1694(01)00585-6 CrossRefGoogle Scholar
  3. Bowler JM (1986) Spatial variability and hydrologic evolution of Australian lake basins: analogue for Pleistocene hydrologic change and evaporite formation. Palaeogeogr Palaeoclimatol Palaeoecol 54:21–41.  https://doi.org/10.1016/0031-0182(86)90116-1 CrossRefGoogle Scholar
  4. Briere PR (2000) Playa, playa lake, sabkha: proposed definitions for old terms. J Arid Environ 45:1–7.  https://doi.org/10.1006/jare.2000.0633 CrossRefGoogle Scholar
  5. Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294:241–250.  https://doi.org/10.1016/j.jhydrol.2004.02.023 CrossRefGoogle Scholar
  6. Brunner P, Hendricks Franssen H-J, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15:5–18.  https://doi.org/10.1007/s10040-006-0127-z CrossRefGoogle Scholar
  7. Cardon O, Le Goux F, Salabert J (2015) Prospection d’uranium en Mongolie: découverte majeure dans le désert de Gobi [Uranium exploration in Mongolia: important discovery in the Gobi Desert]. Rev générale Nucléaire 47:12–19Google Scholar
  8. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 2. uniqueness, stability, and solution algorithms. Water Resour Res 22:211–227.  https://doi.org/10.1029/WR022i002p00211 CrossRefGoogle Scholar
  9. Coelho VHR, Montenegro S, Almeida CN, Silva BB, Oliveira LM, Gusmão ACV, Freitas ES, Montenegro AAA (2017) Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data. J Hydrol 548:1–15.  https://doi.org/10.1016/j.jhydrol.2017.02.054 CrossRefGoogle Scholar
  10. Colby BG, Jacobs KL (2006) Arizona water policy: management innovations in an urbanizing, arid region. Resour Future.  https://doi.org/10.4324/9781936331390
  11. Currell M, Gleeson T, Dahlhaus P (2016) A new assessment framework for transience in hydrogeological systems. Groundwater 54:4–14.  https://doi.org/10.1111/gwat.12300 CrossRefGoogle Scholar
  12. Davis JA, Kerezsy A, Nicol S (2017) Springs: conserving perennial water is critical in arid landscapes. Biol Conserv 211:30–35.  https://doi.org/10.1016/j.biocon.2016.12.036 CrossRefGoogle Scholar
  13. Decuyper M, Chávez RO, Copini P, Sass-Klaassen U (2016) A multi-scale approach to assess the effect of groundwater extraction on Prosopis Tamarugo in the Atacama Desert. J Arid Environ 131:25–34.  https://doi.org/10.1016/j.jaridenv.2016.03.014 CrossRefGoogle Scholar
  14. Doherty J (2001) Improved calculations for dewatered cells in MODFLOW. Ground Water 39:863–869.  https://doi.org/10.1111/j.1745-6584.2001.tb02474.x CrossRefGoogle Scholar
  15. Doherty J (2005) PEST: model-independesnt parameter estimation, 5th edn. Computing, Watermark, Brisbane, AustraliaGoogle Scholar
  16. Fan Y, Duffy CJ, Oliver DS (1997) Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. J Hydrol 196:139–184.  https://doi.org/10.1016/S0022-1694(96)03292-1 CrossRefGoogle Scholar
  17. Fontes JC, Yousfi M, Allison GB (1986) Estimation of long-term, diffuse groundwater discharge in the northern Sahara using stable isotope profiles in soil water. J Hydrol 86:315–327.  https://doi.org/10.1016/0022-1694(86)90170-8 CrossRefGoogle Scholar
  18. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc London B Biol Sci 358:1957–1972.  https://doi.org/10.1098/rstb.2003.1380 CrossRefGoogle Scholar
  19. García-Rodríguez M, Antón L, Martinez-Santos P (2014) Estimating groundwater resources in remote desert environments by coupling geographic information systems with groundwater modeling (Erg Chebbi, Morocco). J Arid Environ 110:19–29.  https://doi.org/10.1016/j.jaridenv.2014.05.026 CrossRefGoogle Scholar
  20. Gates J, Edmunds WM, Ma J, Scanlon B (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910.  https://doi.org/10.1007/s10040-007-0264-z CrossRefGoogle Scholar
  21. Graham SA, Hendrix MS, Johnson CL, Badamgarav D, Badarch G, Amory J, Porter M, Barsbold R, Webb LE, Hacker BR (2001) Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geol Soc Am Bull 113:1560–1579.  https://doi.org/10.1130/0016-7606(2001)113 CrossRefGoogle Scholar
  22. Harbaugh AW (2005) MODFLOW-2005, the US geological survey modular ground-water model: the ground-water flow process. US Geological Survey, Reston, VAGoogle Scholar
  23. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 0092Google Scholar
  24. Harrington GA, Cook PG, Herczeg AL (2002) Spatial and temporal variability of ground water recharge in central Australia: a tracer approach. Ground Water 40:518–527.  https://doi.org/10.1111/j.1745-6584.2002.tb02536.x CrossRefGoogle Scholar
  25. Hendricks Franssen HJ, Brunner P, Makobo P, Kinzelbach W (2008) Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images. Water Resour Res 44.  https://doi.org/10.1029/2007WR006097
  26. Houston J (2006) Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes. J Hydrol 330:402–412.  https://doi.org/10.1016/j.jhydrol.2006.03.036 CrossRefGoogle Scholar
  27. Jia Y, Guo H, Xi B, Jiang Y, Zhang Z, Yuan R, Yi W, Xue X (2017) Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Sci Total Environ 601–602:691–702.  https://doi.org/10.1016/j.scitotenv.2017.05.196 CrossRefGoogle Scholar
  28. Jin L, Edmunds WM, Lu Z, Ma J (2015) Geochemistry of sediment moisture in the Badain Jaran Desert: implications of recent environmental changes and water–rock interaction. Appl Geochem 63:235–247.  https://doi.org/10.1016/j.apgeochem.2015.09.006 CrossRefGoogle Scholar
  29. Johnson (2015) Sedimentary basins in transition: Distribution and tectonic settings of Mesozoic strata in Mongolia. In: Late Jurassic Margin of Laurasia: a record of faulting accommodating plate rotation. Special Paper of the Geological Society of America. Geological Society of America, Boulder, CO, pp 543–560.  https://doi.org/10.1130/2015.2513(17)
  30. Johnson CL, Webb LE, Graham SA, Hendrix MS, Badarch G (2001) Memoir 194: Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental deformation. Geol Soc Am Mem.  https://doi.org/10.1130/0-8137-1194-0
  31. Knowling MJ, Werner AD (2016) Estimability of recharge through groundwater model calibration: insights from a field-scale steady-state example. J Hydrol 540:973–987.  https://doi.org/10.1016/j.jhydrol.2016.07.003 CrossRefGoogle Scholar
  32. Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73:963–977.  https://doi.org/10.1016/j.jaridenv.2009.04.022 CrossRefGoogle Scholar
  33. Ma JZ, Ding Z, Gates JB, Su Y (2008) Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, Northwest China. Environ Geol 55:1407–1419.  https://doi.org/10.1007/s00254-007-1091-1 CrossRefGoogle Scholar
  34. Ma JZ, Ding Z, Edmunds WM, Gates JB, Huang T (2009) Limits to recharge of groundwater from Tibetan plateau to the Gobi Desert: implications for water management in the mountain front. J Hydrol 364:128–141.  https://doi.org/10.1016/j.jhydrol.2008.10.010 CrossRefGoogle Scholar
  35. Munkbaatar P, Sukhbaatar I, Hamada E, Morimo R, Hirabaru O (2008) Drinking water quality of Gobi region of Mongolia. In: Proceedings of IFOST-2008 - 3rd International Forum on Strategic Technologies, pp 679–681.  https://doi.org/10.1109/IFOST.2008.4602880
  36. Nemer B, Tuinhof A (2010) Groundwater assessment of the southern Gobi region. Mongolia discussion papers, East Asia and Pacific sustainable development department. World Bank, Washington, DCGoogle Scholar
  37. Nriagu J, Johnson J, Samurkas C, Erdenechimeg E, Ochir C, Chandaga O (2013) Co-occurrence of high levels of uranium, arsenic and molybdenum in groundwater of Dornogobi, Mongolia. Glob Heal Perspect 1:45–54.  https://doi.org/10.5645/ghp2013.01.01.07 CrossRefGoogle Scholar
  38. Painter S, Başaǧaoǧlu H, Liu A (2008) Robust representation of dry cells in single-layer MODFLOW models. Ground Water 46:873–881.  https://doi.org/10.1111/j.1745-6584.2008.00483.x Google Scholar
  39. Prost GL (2004) Tectonics and hydrocarbon systems of the east Gobi basin, Mongolia. Am Assoc Pet Geol Bull 88:483.  https://doi.org/10.1306/11150303042 Google Scholar
  40. Rosen MR (1994) Paleoclimate and basin evolution of playa systems. Geol Soc Am Spec Papers.  https://doi.org/10.1130/SPE289
  41. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370.  https://doi.org/10.1002/hyp.6335 CrossRefGoogle Scholar
  42. Sefelnasr A, Gossel W, Wycisk P (2015) Groundwater management options in an arid environment: the Nubian sandstone aquifer system, eastern Sahara. J Arid Environ 122:46–58.  https://doi.org/10.1016/j.jaridenv.2015.06.009 CrossRefGoogle Scholar
  43. Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329–338.  https://doi.org/10.1111/j.1745-6584.2007.00302.x CrossRefGoogle Scholar
  44. Simmons CT (2005) Variable density groundwater flow: from current challenges to future possibilities. Hydrogeol J 13:116–119.  https://doi.org/10.1007/s10040-004-0408-3 CrossRefGoogle Scholar
  45. Tsogtbaatar J, Janchivdorj L, Unurjargal D, Erdenechimeg B (2009) The groundwater problem in Mongolia. In: Tanaka T, Jayakumar R, Tsujimura M (eds) UNESCO chair workshop on international strategy for sustainable groundwater management: transboundary aquifers and integrated watershed management. UNESCO, Beijing and Terrestrial Environment Research Center, University of Tsukuba, Ibaraki, Japan, pp 25–38Google Scholar
  46. Wang Y-J, Qin D-H (2017) Influence of climate change and human activity on water resources in arid region of Northwest China: an overview. Adv Clim Chang Res 8:268–278.  https://doi.org/10.1016/j.accre.2017.08.004 CrossRefGoogle Scholar
  47. Warren JK ( 2016) Sabkhas, saline mudflats and pans. In: Warre JK (ed) Evaporites: a geological compendium. Springer, Cham, Switzerland, pp 207–301.  https://doi.org/10.1007/978-3-319-13512-0_3
  48. Xun S (2017) The mineral industries of Mongolia, minerals yearbook - Mongolia - 2014. USGS, Reston, VAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geosciences DepartmentOrano MiningParisFrance
  2. 2.Centre de GéosciencesMINES ParisTech, PSL Research UniversityFontainebleauFrance

Personalised recommendations