Advertisement

Characterizing fluxes of trace metals related to dissolved and suspended matter during a storm event: application to a karst aquifer using trace metals and rare earth elements as provenance indicators

  • Cybèle Cholet
  • Marc Steinmann
  • Jean-Baptiste Charlier
  • Sophie Denimal
Paper
  • 64 Downloads

Abstract

The origin of suspended matter and colloids in karst aquifers during storm events is not well understood in spite of their potentially important role in the transport of poorly soluble inorganic, organic, and microbiological pollutants. This work aims to characterize the fluxes of trace metals related to dissolved and suspended matter during a storm event at the spring of a karst aquifer in the Jura Mountains in France that is mainly recharged by diffuse infiltration. Various natural tracers, including rare earth elements (REE), were used to identify the origin of the contributing dissolved and suspended fractions. The storm event was characterized by the temporally delayed arrival of two different fractions of suspended particulate matter (SPM). A first SPM peak corresponded to autochthonous conduit sediment mobilized by a piston effect at the beginning of the event. A second SPM peak, related to the arrival of allochthonous soil particulates, was characterized by elevated turbidity and high concentrations of K, Al, Fe, and Mn. In the dissolved fraction, this second SPM peak was accompanied by various poorly soluble trace elements, which were interpreted by the presence of nanoparticles and colloids (NPCs). The REE distribution patterns demonstrated that both the NPCs and the SPM were derived from soil particles whatever the storm stage. This suggests that the SPM of the first stage was reworked cave sediment from previous storms composed of residual clays and soil particles, which excludes authigenic precipitates (such as Fe-Mn oxyhydroxides and speleothems) as a significant source for autochthonous sediments.

Keywords

Karst France Hydrochemistry Suspended load Natural tracer 

Caractérisation des flux des métaux en éléments tracés associés à la matière dissoute et en suspension au cours d’une crue: application à un aquifère karstique en utilisant des métaux traces et les terres rares comme indicateurs de provenance

Résumé

L’origine de la matière suspendue et des colloïdes dans les aquifères karstiques au cours des crues n’est pas bien comprise malgré leur rôle potentiellement important dans le transport de polluants inorganiqueset organiques peu solubles et polluants microbiologiques. Ce travail vise à caractériser les flux des éléments métalliques en trace liés à la matière dissoute et en suspension lors d’une crue à l’exutoire d’un aquifère karstique dans les montagnes du Jura en France, qui est principalement rechargé par infiltration diffuse. Différents traceurs naturels, y compris les terres rares (TR), ont été utilisés pour identifier l’origine des fractions dissoutes et en suspension. La crue a été caractérisée par une arrivée différée dans le temps de deux fractions différentes de matièresen suspension (MES). Un premier pic de MES correspondait au sédiment endogène du conduit mobilisé par un effet piston au début de l’événement. Un second pic de MES, associé à l’arrivée de particules exogènes, était caractérisé par une turbidité élevée et des concentrations élevées en K, Al, Fe et Mn. Dans la fraction dissoute, le second pic de MES était accompagné par différents éléments traces peu solubles, ce qui a été interprété par la présence de nanoparticules et de colloïdes (NPCs). Les modalités de distribution des MES montrent que les NPCs et MES proviennent tous les deux de particules de sol quel que soit le stade de l’événement. Cela suggère que les MES au début de l’événement proviennent de la remobilisation de sédiments déposés lors de crues précédentes, composés d’argiles résiduelles et de particules de sol, ce qui exclut des précipités endogènes (tels que des oxyhydroxydes de Fe-Mn et des spéléothèmes) comme une source significative de sédiments autochtones.

Caracterización de los flujos de metales traza relacionados con la materia disuelta y en suspensión durante un evento de tormenta: aplicación a un acuífero kárstico usando metales traza y elementos de tierras raras como indicadores de procedencia

Resumen

El origen de la materia en suspensión y los coloides en los acuíferos kársticos durante los eventos de tormentas no está bien conocido a pesar de su papel potencialmente importante en el transporte de contaminantes inorgánicos, orgánicos y microbiológicos poco solubles. El objetivo de este trabajo es caracterizar los flujos de metales traza relacionados con la materia disuelta y en suspensión durante un evento de tormenta en el manantial de un acuífero kárstico en Jura Mountains en Francia, que se recarga principalmente por infiltración difusa. Se usaron varios trazadores naturales, incluidos los elementos de tierras raras (REE), para identificar el origen de las contribuciones de las fracciones disueltas y en suspensión. El evento de tormenta se caracterizó por la llegada temporalmente retrasada de dos fracciones diferentes de materia particulada en suspensión (SPM). Un primer pico de SPM correspondió a un sedimento de autóctono del conducto movilizado por un efecto de pistón al comienzo del evento. Un segundo pico de SPM, relacionado con la llegada de partículas de suelo alóctono, se caracterizó por una elevada turbidez y altas concentraciones de K, Al, Fe, y Mn. En la fracción disuelta, este segundo pico de SPM fue acompañado por varios oligoelementos poco solubles, que fueron interpretados por la presencia de nanopartículas y coloides (NPC). Los patrones de distribución REE demostraron que tanto los NPC como el SPM se derivaron de las partículas del suelo cualquiera que sea la etapa de la tormenta. Esto sugiere que el SPM de la primera etapa fue un sedimento retrabajado de tormentas previas compuesto de arcillas residuales y partículas de suelo, que excluye los precipitados autigénicos (como oxihidróxidos de Fe-Mn y espeleotemas) como fuente significativa de sedimentos autóctonos.

暴雨事件期间与溶解物质和悬浮物质相关的微量金属的通量特征描述:使用痕量金属和稀土元素作为出处指标应用于岩溶含水层

摘要

尽管岩溶含水层中的悬浮物质和胶体在溶解很差的无机、有机及微生物污染物搬运中可能扮演非常重要的角色,但暴雨事件期间岩溶含水层中的悬浮物质和胶体成因还不是了解的很清楚。本研究工作目的就是描述法国Jura山脉中一个主要有弥散入渗不及的岩溶含水层泉处暴雨事件期间与溶解物质和悬浮物质相关的微量金属通量的特征。各种天然示踪剂包括稀土元素用来确定溶解和悬浮物质的成因。暴雨事件的特征就是悬浮微粒物质两种不同部分的延迟达到。第一个悬浮微粒物质高峰相当于原地的通道沉积物,这个原地的通道沉积物由事件开始时的活塞效应激活。第二个悬浮微粒物质高峰与外来的土壤微粒相关,呈现的特征是浊度升高,以及K, Al, Fe和 Mn浓度升高。在溶解物质中,第二个悬浮微粒物质高峰伴随着各种溶解很差的微量元素,这些微量元素可通过纳米粒子和胶体的存在得到解译。稀土元素分布模式显示,无论在暴雨的什么阶段,纳米粒子和悬浮微粒物质都来源于土壤粒子。这表明第一阶段的悬浮微粒物质由先前的包含残余黏土和土壤颗粒的暴雨再沉积成洞穴沉积物,这些残余黏土和土壤颗粒不包括作为原地沉积物重要来源的自生沉淀物(如铁锰氢氧化合物及洞穴堆积物)。

Caracterização dos fluxos de metais traços relacionados ao material dissolvido e em suspensão durante eventos de tempestade: aplicação em um aquífero cárstico usando metais traços e elementos de terras raras como indicadores de proveniência

Resumo

A origem de materiais em suspensão e coloides em aquíferos cársticos durante eventos de tempestade não é muito conhecida, apesar do seu papel potencialmente importante no transporte de poluentes inorgânicos, orgânicos e microbiológicos pouco solúveis. Este trabalho tem como objetivo principal a caracterização dos fluxos de metais traços relacionados com a matéria dissolvida e em suspensão durante eventos de tempestade em uma nascente em um aquífero cárstico nas Montanhas Jura, na França, que é principalmente recarregada por infiltração difusa. Vários traçadores naturais, incluindo elementos de terras raras (ETR) foram usados para identificar a origem das frações contribuintes dissolvidas e em suspensão. Eventos de tempestade são caracterizados pela chegada temporal de duas diferentes frações de material particulado em suspensão (MPS). O primeiro pico de MPS corresponde a um sedimento de conduto autóctone mobilizado pelo efeito pistão no inicio do evento. Um segundo pico do MPS, relacionado à chegada de partículas de solo alóctone, foi caracterizada pela turbidez elevada e altas concentrações de K, Al, Fe e Mn. Na fração dissolvida, o segundo pico de MPS foi acompanhado por vários oligoelementos pouco solúveis, que podem ser interpretados pela presença de nanopartículas e coloides (NPCs). Os padrões de distribuição dos ETR demonstraram que tantos os NPCs quanto o MPS são provenientes das partículas do solo, independentemente do estágio da tempestade. Isto sugere que o MPS do primeiro estágio foi retrabalhado em sedimentos de caverna em tempestades anteriores compostas por argilas residuais e partículas de solo, o que exclui precipitados autigênicos (como os oxi-hidróxidos de Fe-Mn e espelotemas) como fonte significativa de sedimentos autóctones.

Notes

Acknowledgements

The authors wish to thank Bruno Régent for his indispensable collaboration during fieldwork. Christophe Loup, Nadia Crini, and Caroline Amiot are thanked for the laboratory analyses. We would also like to thank the municipality of the village of Epenoy for giving access to their drinking-water-supply station. The Jurassic Karst hydrogeological observatory is part of the INSU/CNRS national observatory for karstic aquifers, SNO KARST (http://www.sokarst.org). The present paper profited from fruitful discussions with various colleagues of this network. The constructive reviews of N. Goldscheider and an anonymous reviewer helped to improve an earlier version of the manuscript.

Funding information

This work was carried out with the financial support of the Regional Council of Burgundy Franche-Comté and the French Geological Survey BRGM, which is kindly acknowledged.

Supplementary material

10040_2018_1859_MOESM1_ESM.pdf (88 kb)
ESM 1 (PDF 88 kb)

References

  1. Amraoui F, Razack M, Bouchaou L (2003) Turbidity dynamics in karstic systems: example of Ribaa and Bittit springs in the Middle Atlas (Morocco). Hydrol Sci J 48:971–984CrossRefGoogle Scholar
  2. Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J, Andersson P (2006) Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood. Geochim Cosmochim Acta 70:3261–3274.  https://doi.org/10.1016/j.gca.2006.04.021 CrossRefGoogle Scholar
  3. Andreo B, Goldscheider N, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ, Zwahlen F (2006) Karst groundwater protection: first application of a pan-European approach to vulnerability, hazard and risk mapping in the sierra de Líbar (southern Spain). Sci Total Environ 357:54–73.  https://doi.org/10.1016/j.scitotenv.2005.05.019 CrossRefGoogle Scholar
  4. Aquilina L, Ladouche B, Dörfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327:472–485CrossRefGoogle Scholar
  5. Atteia O (1992) Rôle du sol dans le transfert des éléments traces en solution: application à l’étude de quelques écosystèmes d’altitude [Role of the soil in the transfer of trace elements in solution: application to the study of some high altitude ecosystems]. PhD Thesis, EPFL, Lausanne, Switzerland. https://infoscience.epfl.ch/record/31509. Accessed August 2018
  6. Atteia O, Perret D, Adatte T, Kozel R, Rossi P (1998) Characterization of natural colloids from a river and spring in a karstic basin. Environ Geol 34:257–269.  https://doi.org/10.1007/s002540050277 CrossRefGoogle Scholar
  7. Batiot C, Emblanch C, Blavoux B (2003) Carbone organique total (COT) et magnésium (Mg2+): deux traceurs complémentaires du temps de séjour dans l’aquifère karstique [Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems]. C R Geosci 335:205–214.  https://doi.org/10.1016/S1631-0713(03)00027-0 CrossRefGoogle Scholar
  8. Binet S, Mudry J, Bertrand C, Guglielmi Y, Cova R (2006) Estimation of quantitative descriptors of northeastern Mediterranean karst behavior: multiparametric study and local validation of the Siou-Blanc Massif (Toulon, France). Hydrogeol J 14:1107–1121.  https://doi.org/10.1007/s10040-006-0044-1 CrossRefGoogle Scholar
  9. Bourdin C, Douville E, Genty D (2011) Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet cave, southeastern France. Chem Geol 290:1–11.  https://doi.org/10.1016/j.chemgeo.2011.08.006 CrossRefGoogle Scholar
  10. Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795CrossRefGoogle Scholar
  11. Brioschi L, Steinmann M, Lucot E, Pierret MC, Stille P, Prunier J, Badot PM (2013) Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant Soil 366:143–163.  https://doi.org/10.1007/s11104-012-1407-0 CrossRefGoogle Scholar
  12. Caetano Bicalho C, Batiot-Guilhe C, Seidel J, Van Exter S , Jourde H (2012) Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J Hydrol 450–451:206–218CrossRefGoogle Scholar
  13. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3 ) to understand the role of the unsaturated zone: a case study—karst aquifers in the Doubs Valley, eastern France. Geophys Res Lett 30:1322.  https://doi.org/10.1029/2002GL016781 CrossRefGoogle Scholar
  14. Charlier J-B, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64.  https://doi.org/10.1016/j.jhydrol.2012.06.043 CrossRefGoogle Scholar
  15. Chen Z, Auler AS, Bakalowicz M, Drew D, Griger F, Hartmann J, Jiang G, Moosdorf N, Richts A, Stevanovic Z, Veni G, Goldscheider N (2017) The world karst aquifer mapping project: concept, mapping procedure and map of Europe. Hydrogeol J 25:771–785.  https://doi.org/10.1007/s10040-016-1519-3 CrossRefGoogle Scholar
  16. Cholet C (2017) Fonctionnement hydrogéologique et processus de transport dans les aquifères karstiques du Massif du Jura [Hydrogeological functioning and transport processes in the karst aquifers of the Jura Mountains]. PhD Thesis, University of Burgundy/Franche-Comté, Dijon, France. https://hal.archives-ouvertes.fr/tel-01617489. Accessed August 2018
  17. Cholet C, Charlier J-B, Moussa R, Steinmann M, Denimal S (2017) Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation. Hydrol Earth Syst Sci 21:3635–3653.  https://doi.org/10.5194/hess-21-3635-2017 CrossRefGoogle Scholar
  18. Dahlqvist R, Andersson K, Ingri J, Larsson T, Stolpe B, Turner D (2007) Temporal variations of colloidal carrier phases and associated trace elements in a boreal river. Geochim Cosmochim Acta 71:5339–5354.  https://doi.org/10.1016/j.gca.2007.09.016 CrossRefGoogle Scholar
  19. Drew D, Hötzl H (1999) Karst hydrogeology and human activities: impacts, consequences and implications. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  20. Dussart-Baptista L, Massei N, Dupont J-P, Jouenne T (2003) Transfer of bacteria-contaminated particles in a karst aquifer: evolution of contaminated materials from a sinkhole to a spring. J Hydrol 284:285–295.  https://doi.org/10.1016/j.jhydrol.2003.08.007 CrossRefGoogle Scholar
  21. Feng J-L (2010) Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering. Chem Geol 271:112–132.  https://doi.org/10.1016/j.chemgeo.2010.01.003 CrossRefGoogle Scholar
  22. Filippini M, Squarzoni G, De Waele J, Fiorucci A, Vigna B, Grillo B, Riva A, Rossetti S, Zini L, Casagrande G, Stumpp C, Gargini A (2018) Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer. J Hydrol 556:572–584.  https://doi.org/10.1016/j.jhydrol.2017.11.040 CrossRefGoogle Scholar
  23. Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKCrossRefGoogle Scholar
  24. Fournier M, Motelay-Massei A, Massei N, Aubert M, Bakalowicz M, Dupont JP (2009) Investigation of transport processes inside karst aquifer by means of STATIS. Ground Water 47:391–400CrossRefGoogle Scholar
  25. Frederickson GC, Criss RE (1999) Isotope hydrology and residence times of the unimpounded Meramec River basin, Missouri. Chem Geol 157:303–317.  https://doi.org/10.1016/S0009-2541(99)00008-X CrossRefGoogle Scholar
  26. Frierdich AJ, Catalano JG (2012) Distribution and speciation of trace elements in iron and manganese oxide cave deposits. Geochim Cosmochim Acta 91:240–253CrossRefGoogle Scholar
  27. Frierdich AJ, Hasenmueller EA, Catalano JG (2011) Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: implications for trace element mobility in karst systems. Chem Geol 284:82–96CrossRefGoogle Scholar
  28. Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. In: Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 225–272CrossRefGoogle Scholar
  29. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. In: IAH International Contributions to Hydrogeology 26. CRC, Boca Raton, FLGoogle Scholar
  30. Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46:61–68.  https://doi.org/10.1111/j.1745-6584.2007.00373.x CrossRefGoogle Scholar
  31. Hartland A, Fairchild IJ, Lead JR, Borsato A, Baker A, Frisia S, Baalousha M (2012) From soil to cave: transport of trace metals by natural organic matter in karst dripwaters. Chem Geol 304–305:68–82.  https://doi.org/10.1016/j.chemgeo.2012.01.032 CrossRefGoogle Scholar
  32. Herman EK, Toran L, White WB (2012) Clastic sediment transport and storage in fluviokarst aquifers: an essential component of karst hydrogeology. Carbonates Evaporites 27:211–241.  https://doi.org/10.1007/s13146-012-0112-7 CrossRefGoogle Scholar
  33. Koeppenkastrop D, De Carlo E (1992) Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach. Chem Geol 95:251–263CrossRefGoogle Scholar
  34. Laroche E, Petit F, Fournier M, Pawlak B (2010) Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply. J Hydrol 392:12–21.  https://doi.org/10.1016/j.jhydrol.2010.07.022 CrossRefGoogle Scholar
  35. Laveuf C, Cornu S, Juillot F (2008) Rare earth elements as tracers of pedogenetic processes. C R Geosci 340:523–532.  https://doi.org/10.1016/j.crte.2008.07.001 CrossRefGoogle Scholar
  36. Laveuf C, Cornu S, Guilherme LRG, Guerin A, Juillot F (2012) The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma 170:25–38.  https://doi.org/10.1016/j.geoderma.2011.10.014 CrossRefGoogle Scholar
  37. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA: using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143.  https://doi.org/10.1016/S0009-2541(01)00319-9 CrossRefGoogle Scholar
  38. Lee ES, Krothe NC (2003) Delineating the karstic flow system in the Upper Lost River drainage basin, south central Indiana: using sulphate and δ34SSO4 as tracers. Appl Geochem 18:145–153.  https://doi.org/10.1016/S0883-2927(02)00067-7 CrossRefGoogle Scholar
  39. Mahler BJ, Lynch FL (1999) Muddy waters: temporal variation in sediment discharging from a karst spring. J Hydrol 214:165–178CrossRefGoogle Scholar
  40. Mahler BJ, Personné J-C, Lods GF, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238:179–193.  https://doi.org/10.1016/S0022-1694(00)00324-3 CrossRefGoogle Scholar
  41. Massei N, Wang HQ, Dupont JP, Rodet J, Laignel B (2003) Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. J Hydrol 275:109–121CrossRefGoogle Scholar
  42. Massei N, Dupont JP, Mahler BJ, Laignel B, Fournier M, Valdes D, Ogier S (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329:244–257CrossRefGoogle Scholar
  43. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312.  https://doi.org/10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  44. McLennan S (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Geochemistry and mineralogy of rare earth elements. Mineral. Soc. Am., Washington, DC, pp 169–225Google Scholar
  45. Morasch B (2013) Occurrence and dynamics of micropollutants in a karst aquifer. Environ Pollut 173:133–137.  https://doi.org/10.1016/j.envpol.2012.10.014 CrossRefGoogle Scholar
  46. Mudarra M, Andreo B, Baker A (2011) Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes. Sci Total Environ 409:3448–3462.  https://doi.org/10.1016/j.scitotenv.2011.05.026 CrossRefGoogle Scholar
  47. Mudarra M, Andreo B, Barberá JA, Mudry J (2014) Hydrochemical dynamics of TOC and NO3-contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71:507–523CrossRefGoogle Scholar
  48. Pokrovsky OS, Manasypov RM, Loiko SV, Shirokova LS (2016) Organic and organo-mineral colloids in discontinuous permafrost zone. Geochim Cosmochim Acta 188:1–20.  https://doi.org/10.1016/j.gca.2016.05.035 CrossRefGoogle Scholar
  49. Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14:473–484CrossRefGoogle Scholar
  50. Pronk M, Goldscheider N, Zopfi J (2007) Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environ Sci Technol 41:8400–8405CrossRefGoogle Scholar
  51. Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:37–48CrossRefGoogle Scholar
  52. Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Groundwater 34:23–30.  https://doi.org/10.1111/j.1745-6584.1996.tb01861.x CrossRefGoogle Scholar
  53. Shevenell L, McCarthy JF (2002) Effects of precipitation events on colloids in a karst aquifer. J Hydrol 255:50–68.  https://doi.org/10.1016/S0022-1694(01)00510-8 CrossRefGoogle Scholar
  54. Steinmann M, Stille P (1997) Rare earth element behavior and Pb, Sr, Nd isotope systematics in a heavy metal contaminated soil. Appl Geochem 12:607–623CrossRefGoogle Scholar
  55. Steinmann M, Stille P (2008) Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic-granitic catchment basin (Massif Central, France). Chem Geol 254:1–18CrossRefGoogle Scholar
  56. Taylor SR, McLennan S (1985) The continental crust: its composition and evolution. Blackwell, Oxford, UKGoogle Scholar
  57. Tepe N, Bau M (2014) Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Sci Total Environ 488–489:243–251.  https://doi.org/10.1016/j.scitotenv.2014.04.083 CrossRefGoogle Scholar
  58. Tepe N, Bau M (2015) Distribution of rare earth elements and other high field strength elements in glacial meltwaters and sediments from the western Greenland Ice Sheet: evidence for different sources of particles and nanoparticles. Chem Geol 412:59–68.  https://doi.org/10.1016/j.chemgeo.2015.07.026 CrossRefGoogle Scholar
  59. Vermot-Desroches B (2015) Réalités du changement climatique en Franche-Comté du milieu du XIXe siècle à nos jours [Realities of the climate change in Franche-Comté from the XIXth century up to the present]. In: Histoire du climat en Franche-Comté. Éditions du Belvédère, Pontarlier, FranceGoogle Scholar
  60. Vesper D, White W (2003a) Metal transport to karst springs during storm flow: an example from Fort Campbell, Kentucky/Tennessee, USA. J Hydrol 276:20–36.  https://doi.org/10.1016/S0022-1694(03)00023-4 CrossRefGoogle Scholar
  61. Vesper D, White W (2003b) Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers. Environ Geol 45:481–493.  https://doi.org/10.1007/s00254-003-0899-6 CrossRefGoogle Scholar
  62. Vesper D, Loop C, White W (2001) Contaminant transport in karst aquifers. Theor Appl Karstology 13:101–111Google Scholar
  63. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105CrossRefGoogle Scholar
  64. White WB, Vito C, Scheetz BE (2009) The mineralogy and trace element chemistry of black manganese oxide deposits from caves. J Cave Karst Stud 71:136–143Google Scholar
  65. Zhou H, Wang Q, Zhao J, Zheng L, Guan H, Feng Y, Greig A (2008) Rare earth elements and yttrium in a stalagmite from central China and potential paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 270:128–138.  https://doi.org/10.1016/j.palaeo.2008.09.001 CrossRefGoogle Scholar
  66. Zhou H, Greig A, Tang J, You C-F, Yuan D, Tong X, Huang Y (2012) Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochim Cosmochim Acta 83:1–18.  https://doi.org/10.1016/j.gca.2011.12.027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cybèle Cholet
    • 1
    • 2
  • Marc Steinmann
    • 1
  • Jean-Baptiste Charlier
    • 2
  • Sophie Denimal
    • 1
  1. 1.Chrono-Environnement, UMR 6249 UBFC/CNRSUniversity of Burgundy Franche-ComtéBesançonFrance
  2. 2.BRGMUniversity of MontpellierMontpellierFrance

Personalised recommendations