Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 345–362 | Cite as

Contribution of precipitation to groundwater flow systems in three major alluvial fans in Toyama Prefecture, Japan: stable-isotope characterization and application to the use of groundwater for urban heat exchangers

  • Nagisa Okakita
  • Kaname Iwatake
  • Hiromichi Hirata
  • Akira UedaEmail author
Paper
  • 58 Downloads

Abstract

The isotopic compositions (D and 18O) of 177 precipitation samples collected at seven observation stations in Toyama Prefecture and one station in Gifu Prefecture in the northern part of central Japan were determined. The source and characteristics of the isotopes were clarified and their contribution to the groundwater flow systems of three major alluvial fans in the same area were investigated. The δD and δ18O values ranged from −113.3 to −26.7‰ and − 16.4 to −4.2‰, respectively. Precipitation samples collected from May to September (summer) and November to March (winter) plotted along two meteoric water lines, with d-excess = 10 and 30, respectively. Conversely, precipitation samples collected in April and October, and some samples in November to March, plotted between the two meteoric water lines. The contribution of precipitation to the groundwater systems was modelled based on the assumption that groundwater is a mixture of major river water and precipitation. According to the observed δ18O values for the precipitation, river water, and groundwater samples, the contribution of local precipitation to groundwater reservoirs ranged from 5 to 100%. Groundwater flows near the rivers did not always originate from 100% river runoff; however, the contribution of river runoff to groundwater decreased with increasing distance from the rivers, and groundwater flows far from the river were generated mainly by precipitation. The possibility of using groundwater for a ground-source heat pump system, for air conditioning in houses and to melt the snow on roads, is also discussed.

Keywords

Precipitation Hydrogen isotope Oxygen isotope Japan Groundwater development 

Contribution des précipitations aux systèmes hydrogéologiques d’écoulement dans trois principaux deltas alluviaux de la Préfecture de Toyama, Japon: caractérisation à l’aide des isotopes stables et application à l’exploitation des eaux souterraines pour des échangeurs urbains de chaleur

Résumé

Les compositions isotopiques (D et 18O) de 177 échantillons de précipitations collectées au niveau de 7 stations d’observation dans la Préfecture de Toyama et une station dans la Préfecture de Gifu dans la partie septentrionale du centre du Japon ont été déterminées. L’origine et les caractéristiques des isotopes ont été précisées et leurs contributions aux systèmes hydrogéologiques d’écoulement de trois principaux deltas alluviaux dans la même région ont été étudiées. Les valeurs de δD et δ18O sont comprises entre −113.3 et −26.7‰, et entre −16.4 et −4.2‰, respectivement. Les échantillons de précipitation prélévés entre mai et septembre (été) et entre novembre et mars (hiver) ont été tracés le long de deux lignes d’eau météorique, avec un d-excès = 10 et 30, respectivement. A l’inverse, les échantillons de précipitation prélevés en avril et octobre, et quelques échantillons entre novembre et mars, ont été tracés entre les deux lignes d’eau météorique. La contribution des précipitations aux systèmes hydrogéologiques a été modélisée à partir de l’hypothèse que l’eau souterraine est un mélange d’eau des principales rivières et les précipitations. Selon les valeurs de δ18O pour les échantillons des précipitations, eaux de rivière et les eaux souterraines, la contribution des précipitations locales aux réservoirs d’eaux souterraines est comprise entre 5 et 100%. Les écoulements d’eaux souterraines à proximité des rivières ne sont pas toujours pour origine 100% d’écoulement de surface; cependant, la contribution du ruissellement des rivières aux eaux souterraines diminue avec l’augmentation de la distance aux rivières, et les écoulements d’eaux souterraines éloignés de la rivière sont générés principalement par les précipitations. La possibilité d’utiliser les eaux souterraines pour les systèmes de pompe à chaleur du sous-sol, pour la climatisation dans les maisons et pour faire fondre la neige sur les routes, est également discuté.

Contribución de la precipitación a los sistemas de flujo de agua subterránea en tres abanicos aluviales principales en Toyama Prefecture, Japón: caracterización de isótopos estables y aplicación al uso de aguas subterráneas para intercambiadores de calor urbano

Resumen

Se determinaron las composiciones isotópicas (D y 18O) de 177 muestras de precipitación recolectadas en siete estaciones de observación en Toyama Prefecture y una estación en Gifu Prefecture en la parte norte del Japón central. Se aclararon la fuente y las características de los isótopos y se investigó su contribución a los sistemas de flujo de agua subterránea de tres abanicos aluviales principales en la misma área. Los valores de δD y δ18O variaron de −113.3 a − 26.7 ‰ y de −16.4 a −4.2 ‰, respectivamente. Las muestras de precipitación recolectadas de mayo a septiembre (verano) y de noviembre a marzo (invierno) se plotearon a lo largo de dos líneas de agua meteórica, con un exceso de d = 10 y 30, respectivamente. Por el contrario, las muestras de precipitación recolectadas en abril y octubre, y algunas muestras en noviembre a marzo, se plotearon entre las dos líneas de agua meteórica. La contribución de la precipitación a los sistemas de agua subterránea se modeló en base a la suposición de que el agua subterránea es una mezcla de agua del río principal y de la precipitación. De acuerdo con los valores observados de δ18O para las muestras de precipitación, agua del río y agua subterránea, la contribución de la precipitación local a los depósitos de agua subterránea varió de 5 a 100%. Los flujos de agua subterránea cerca de los ríos no siempre se originaron del 100% de la escorrentía del río; sin embargo, la contribución de la escorrentía del río al agua subterránea disminuyó al aumentar la distancia de los ríos, y los flujos de aguas subterráneas alejados del río se generaron principalmente por la precipitación. También se discute la posibilidad de usar agua subterránea para un sistema de bombeo de calor de origen terrestre, para el aire acondicionado en las casas y para derretir la nieve en las carreteras.

日本Toyama县三个主要冲积扇中降水对地下水水流系统的贡献:稳定同位素特征描述及其在城市热交换器地下水中的应用

摘要

对在日本中部北方的Toyama县七个观测站和Gifu县一个观测站收集的177个降水样品中的如同位素组分(δD 和 18O)进行了确定。对同位素的来源和特征进行了分类,调查了同位素对同一地区三个主要冲积扇的地下水水流系统的贡献率。δD 和 δ18O值分别为–113.3 至 –26.7‰ 和 –16.4 至 –4.2‰。5月到9月(夏季)和11月到三月(冬季)收集的降水样品沿两个大气水线呈现,d-excess分别等于10和30。相反地,4月和10月收集的降水样品,以及11月到3月收集的一些样品在两个大气水线之间呈现。根据地下水为主要河水和降水混合水这一假设,模拟了降水对地下水系统的贡献率。根据降水、河水和地下水样中观测到的δ18O值,局部降水对地下水库的贡献率为5-100%。河流附近的地下水流并不都是100%源自河流径流;然而,河流径流对地下水的贡献率随着离河流距离的增加而降低,远离河流的地下水流主要源自降水。本文还论述了地下水用于地源热泵系统、家庭空调和道路融雪的可能性。

富山県 (日本)内の3扇状地の地下水系への天水の寄与:安定同位体組成の特徴と都市型熱交換への地下水利用

要旨

富山県内の7カ所と中部日本北部の岐阜県の1カ所の観測所で採集された177個の降水試料の水素・酸素同位体組成を測定した。それにより、降水の起源と特性を明らかにし、同地域の3大扇状地の地下水流動系への降水の寄与の程度を調べた。 天水のδD値とδ18O値は、それぞれ–113.3〜–26.7 ‰および–16.4〜–4.2 ‰の範囲であった。 5月から9月(夏季)および11月から3月(冬季)の間に採取された降水試料は、2つの天水線に沿ってプロットされ、d値 は、10と30であった。4月と10月の降水試料と11月から3月のいくつかの試料は、2つの天水線の間にプロットされた。降水の地下水系への寄与については、地下水が主要な河川水と降水の混合物であるというモデルにもとづいて議論した。河川水と降水試料のδ18O値から、地下水への降水の寄与率は、5〜100%の範囲であった。このうち、河川近傍の地下水では、常に100%の河川水が寄与しているとは限らず、河川からの距離が遠くなるにつれて、その寄与率は減少し、河川から遠い地下水は主に降水により形成されていると推測された。これらの結果をもとに、地中熱ヒートポンプシステムによる住宅の空調や冬季の道路融雪に、地下水を使用する可能性も議論した。

Contribuição da precipitação aos sistemas de fluxo de águas subterrâneas em três leques aluviais na Prefeitura de Toyama, Japão: caracterização de isótopos estáveis e aplicação para o uso das águas subterrâneas para trocadores de calor urbanos

Resumo

As composições isotópicas (D e 18O) de 177 amostras de precipitação coletadas em sete estações de observação na Prefeitura Toyama e em uma estação na Prefeitura de Gifu na parte norte do Japão central foram determinadas. O recurso e as características dos isótopos foram esclarecidos e sua contribuição para sistemas de fluxo das águas subterrâneas em três leques aluviais na mesma área foram investigadas. Os valores δD e δ18O variam de −113.3 a −26.7‰ e −16.4 a −4.2‰, respectivamente. Amostras de precipitação coletadas de maio a setembro (verão) e de novembro a março (inverno) plotados ao longo de duas linhas meteóricas, com d-excesso = 10 e 30, respectivamente. De modo inverso, amostras de precipitação coletadas em abril e outubro, e algumas amostras em novembro e março, plotado entre duas linhas meteóricas. A contribuição da precipitação dos sistemas de águas subterrâneas que foi modelada baseada em uma suposição que águas subterrâneas é uma mistura principalmente de águas fluviais e precipitação. De acordo com os valores δ18O de precipitação observados, águas fluviais, e amostras de águas subterrâneas, a contribuição da precipitação local para reservatórios de águas subterrâneas variam de 5 a 100%. Fluxos de águas subterrâneas próximos aos rios nem sempre originam-se 100% do escoamento do rio, no entanto, a contribuição do escoamento do rio para águas subterrâneas diminuíram com o aumento da distancia dos rios; e fluxos de águas subterrâneas longe do rio foram gerados principalmente pela precipitação. A possibilidade do uso águas subterrâneas para um sistema de bombeamento térmico de fonte de solo, para ar condicionado em casa e derretimento do gelo nas estradas, são também discutidos.

Notes

Acknowledgements

The authors wish to thank T. Mizoguchi, Y. Nakayasu and E. Honoki and members of Kawada Industries Inc., Shirakawa Village Office and Kamiichi Dam office for their help to collect precipitation samples. We also thank the members of Geochemical Laboratory of University of Toyama for their kind assistance and cooperation during this study, especially J. Zhang, M. Kusakabe, B. Kamtchueng, Y. Fujishiro, K. Sasaki, T. Myojo, S. Koji, and J. Morita. We also thank Elizabeth Screaton, Hui Qian and Linhua Sun for their critical, kind and constructive comments which improved the manuscript.

References

  1. Agata S, Kumada M, Satake H (2006) Characteristics of hydrogen and oxygen isotopic compositions and chemistry of precipitation on Ishigaki Island in Okinawa, Japan (in Japanese with English abstract). Chikyukagaku [Geochemistry] 40(3):111–123Google Scholar
  2. Andreoa B, Lin-ana C, Carrascob F, Jimenez de Cisnerosb C, Caballerob F, Mudryc J (2004) Influence of rainfall quantity on the isotopic composition (18O and 2H) of water in mountainous areas: application for groundwater research in the Yunquera-Nieves karst aquifers (S Spain). Appl Geochem 19(4):561–574.  https://doi.org/10.1016/j.apgeochem.2003.08.002 CrossRefGoogle Scholar
  3. Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res 108(D16):4525.  https://doi.org/10.1029/2003JD003597 CrossRefGoogle Scholar
  4. Chiwa M (2010) Characteristics of atmospheric nitrogen and sulfur containing compounds in an inland suburban-forested site in northern Kyushu, western Japan. Atmos Res 96(4):531–543.  https://doi.org/10.1016/j.atmosres.2010.01.001 CrossRefGoogle Scholar
  5. Chkirbene A, Tsujimura M, Charef A, Tanaka T (2009) Hydro-geochemical evolution of groundwater in an alluvial aquifer: case of Kurokawa aquifer, Tochigi Prefecture, Japan. Desalination 246(1–3):485–495.  https://doi.org/10.1016/j.desal.2008.04.057 CrossRefGoogle Scholar
  6. Ciais P, Jouzel J (1994) Deuterium and oxygen 18 in precipitation: isotopic model, including mixed cloud processes. J Geophys Res 99(D8):16793–16803.  https://doi.org/10.1029/94JD00412 CrossRefGoogle Scholar
  7. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 352 ppGoogle Scholar
  8. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133(3467):1833–1834.  https://doi.org/10.1126/science.133.3467.1833 CrossRefGoogle Scholar
  9. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–438CrossRefGoogle Scholar
  10. Delmotte M, Masson V, Jouzel J, Morgan VI (2000) A seasonal deuterium excess signal at law dome, coastal eastern Antarctica: a southern ocean signature. J Geophys Res 105(D6):7187–7197.  https://doi.org/10.1029/1999JD901085 CrossRefGoogle Scholar
  11. Deshpande RD, Bhattacharya SK, Jani RA, Gupta SK (2003) Distribution of oxygen and hydrogen isotopes in shallow groundwaters from southern India: influence of a dual monsoon system. J Hydrol 271(1–4):226–239.  https://doi.org/10.1016/S0022-1694(02)00354-2 CrossRefGoogle Scholar
  12. Diao N, Li Q, Fang Z (2004) Heat transfer in ground heat exchangers with groundwater advection. J Thermal Sci 43(12):1203–1211.  https://doi.org/10.1016/j.ijthermalsci.2004.04.009 CrossRefGoogle Scholar
  13. Fujii S, Soma T, Goto T, Kamishima T, Shimizu M, Kaneko K, Kono Y (1992) 1/100,000 Toyama Prefecture geological map. Report of Toyama Prefecture, Toyama, Japan, pp 112–123Google Scholar
  14. Fujii H, Inatomi T, Itoi R, Uchida Y (2007) Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models. Geothermics 36(5):459–472.  https://doi.org/10.1016/j.geothermics.2007.06.002 CrossRefGoogle Scholar
  15. Hidalgo MC, Cruz-Sanjulian C (2001) Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Appl Geochem 16(7–8):745–758.  https://doi.org/10.1016/S0883-2927(00)00078-0 CrossRefGoogle Scholar
  16. Honoki H, Watanabe K, Iida H, Kawada K, Hayakawa K (2007) Deposition analysis of non sea-salt sulfate and nitrate along to the northwest winter monsoon in Hokuriku district by a snow boring core and bulk samples. Bull Glaciol Res 24:23–28Google Scholar
  17. Huttrer GW (1997) Geothermal heat pumps: an increasingly successful technology. Renew Energy 10(2–3):481–488.  https://doi.org/10.1016/0960-1481(96)00107-3 CrossRefGoogle Scholar
  18. Iwatake K, Mizoguchi T, Tomiyama S, Zhang J, Satake H, Ueda A (2013) Geochemical study of groundwater in the Sho River fan, Toyama Prefecture for heat usage by geothermal heat pump. Geochem J 47(6):577–590.  https://doi.org/10.2343/geochemj.2.0266 CrossRefGoogle Scholar
  19. Jeelani GH, Kumar SU, Kumar B (2013) Variation of d18O and dD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow. J Hydrol 481:157–165.  https://doi.org/10.1016/j.jhydrol.2012.12.035 CrossRefGoogle Scholar
  20. Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation modeling of the isotopic effects during snow formation. J Geophys Res 89:11749–11757.  https://doi.org/10.1029/JD089iD07p11749 CrossRefGoogle Scholar
  21. Kato S, Mizutani Y, Uchida T, Iida C (1984) Geochemical study of ground water systems in the Shogawa Fan, Toyama (in Japanese with English abstract). Chikyukagaku [Geochemistry] 18:29–35Google Scholar
  22. Kortelainen NM, Karhu JA (2004) Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation. J Hydrol 285(1–4):143–157.  https://doi.org/10.1016/j.jhydrol.2003.08.014 CrossRefGoogle Scholar
  23. Lawrence JR, White SD (1991) The elusive climate signal in the isotopic composition of precipitation. In: Stable isotope geochemistry. In: Taylor HP Jr, O’Neil JR, Kaplan IR (eds) A tribute to Samuel Epstein. Geochem Soc Spec Publ 3:169–185Google Scholar
  24. Lee J, Hahn J (2006) Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: implications for heat pumps. J Hydrol 329(3–4):514–526.  https://doi.org/10.1016/j.jhydrol.2006.03.007 CrossRefGoogle Scholar
  25. Li F, Pan G, Tang C, Zhang Q, Yu J (2008) Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China plain. Environ Geol 55(5):1109–1122.  https://doi.org/10.1007/s00254-007-1059-1 CrossRefGoogle Scholar
  26. Liu J, Xiao C, Ding M, Ren J (2014) Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range. J Environ Sci 26(11):2266–2276.  https://doi.org/10.1016/j.jes.2014.09.007 CrossRefGoogle Scholar
  27. Ma J, Zhang P, Zhu G, Wang Y, Edmunds WM, Ding Z, He J (2012) The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China. J Hydrol 436–437(2):92–101.  https://doi.org/10.1016/j.jhydrol.2012.02.046 CrossRefGoogle Scholar
  28. Matsubaya O, Kawaraya H (2014) Hydrogen and oxygen isotopic characteristics of precipitation in coastal areas of Japan determined by observations for 23 years at Akita and for 1–2 years at other several localities. Geochem J 48(4):397–408.  https://doi.org/10.2343/geochemj.2.0314 CrossRefGoogle Scholar
  29. Miyake Y, Matsubaya O, Nishihara C (1968) An isotopic study on meteoric precipitation. Pap Meteorol Geophys 19(2):243–266.  https://doi.org/10.2467/mripapers1950.19.2_243 CrossRefGoogle Scholar
  30. Mizota C, Kusakabe M (1994) Spatial distribution of δD–δ18O values of surface and shallow groundwaters from Japan, South Korea and East China. Geochem J 28(5):387–410.  https://doi.org/10.2343/geochemj.28.387 CrossRefGoogle Scholar
  31. Mizutani Y, Oda M (1983) Stable isotope study of ground water recharge and movement in the Shogawa fan, Toyama (in Japanese with English abstract). Chikyukagaku [Geochemistry] 17(1):1–9Google Scholar
  32. Mizutani Y, Satake H (1997) Hydrogen and oxygen isotope compositions of river waters as an index of the source of groundwaters (in Japanese with English abstract). J Groundw Hydrol 39(4):287–297CrossRefGoogle Scholar
  33. Mizutani Y, Satake H, Takashima H (1987) Tritium age of groundwaters from the Shogawa fan, Toyama (in Japanese with English abstract). Chikyukagaku [Geochemistry] 21(2):49–54Google Scholar
  34. Mizutani Y, Satake H, Yamabe A, Miyachi H, Mase N, Yamamura K (2001) Hydrogen and oxygen isotope ratios of groundwaters in shallow aquifers beneath the alluvial fan (in Japanese with English abstract). J Groundw Hydrol 43(1):3–11CrossRefGoogle Scholar
  35. Nagase Y, Silva ECD (2007) Acid rain in China and Japan: a game-theoretic analysis. Reg Sci Urban Econ 37(1):100–120.  https://doi.org/10.1016/j.regsciurbeco.2006.08.001 CrossRefGoogle Scholar
  36. Ni L, Li H, Jiang Y, Yao Y, Ma Z (2011) A model of groundwater seepage and heat transfer for single-well ground source heat pump systems. Appl Thermal Eng 31(14–15):2622–2630.  https://doi.org/10.1016/j.applthermaleng.2011.04.030 CrossRefGoogle Scholar
  37. Ohizumi T, Fukuzaki N, Kusakabe M (1997) Sulfur isotopic view on the sources of sulfur in atmospheric fallout along the coast of the Sea of Japan. Atmos Environ 31(9):1339–1348.  https://doi.org/10.1016/S1352-2310(96)00278-6 CrossRefGoogle Scholar
  38. Okakita N, Iwatake K, Hirata H, Oda A, Ueda A (2014) Chemical and isotopic studies of precipitation in Toyama, northern central Japan. Abstracts of the Goldschmidt Conference, Sacramento, CA, June 2014, pp 23a–318aGoogle Scholar
  39. Peng H, Mayer B, Harris S, Krouse HR (2004) A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus 56(B):147–159.  https://doi.org/10.1111/j.1600-0889.2004.00094.x CrossRefGoogle Scholar
  40. Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96(D3):5113–5122.  https://doi.org/10.1029/90JD02232 CrossRefGoogle Scholar
  41. Ren W, Yao T, Yang X, Joswiak DR (2013) Implications of variations in d18O and dD in precipitation at Madoi in the eastern Tibetan plateau. Quat Int 313–314:56–61CrossRefGoogle Scholar
  42. Russo SL, Taddia G, Baccino G, Verda V (2011) Different design scenarios related to an open loop groundwater heat pump in a large building: impact on subsurface and primary energy consumption. Energy Build 43(2–3):347–357CrossRefGoogle Scholar
  43. Satake H (1986) Environmental isotope hydrology of precipitations in Toyama, Central Japan (in Japanese with English abstract). Chikyu-kagaku (Geocheistry) 20:90-92Google Scholar
  44. Satake H, Mukai T, Mizutani Y (1984) Environmental isotope hydrology of precipitation and river waters in the Hokuriku district, Japan (in Japanese with English abstract), vol 3. Annual report of the Hydrogen Isotope Research Center, University of Toyama, Toyama, Japan, pp 45–56Google Scholar
  45. Shimano Y, Tsujimura M, Shimada J, Kayane I, Horiuchi S (1992) Groundwater hydrology in the River Kurobe alluvia fan (in Japanese with English abstract). BunseiKiyo 4:17–52Google Scholar
  46. Suzuki G (2003) Source and seasonal variation of fluorine in precipitations at Toyama and Monzen (in Japanese). BA Thesis, University of Toyama, Toyama, Japan, 40 ppGoogle Scholar
  47. Takaoka N, Mizutani Y (1987) Tritiogenic 3He in groundwater in Takaoka. Earth Planet Sci Lett 85(1–3):74–78.  https://doi.org/10.1016/0012-821X(87)90022-7 CrossRefGoogle Scholar
  48. Toyama Prefecture (2006) Groundwater guidelines Toyama (in Japanese). Report of Toyama Prefecture, Toyama Prefecture, 29 pp. http://www.pref.toyama.jp/cms_pfile/00001661/00066924.pdf. Accessed August 2018
  49. Toyama Prefecture (2011) Current state of groundwater. Toyama Prefecture, Toyama, JapanGoogle Scholar
  50. Toyama Prefecture (2013) Status of groundwater (in Japanese). Report of Toyama Prefecture, Toyama Prefecture, 53 pp. http://www.pref.toyama.jp/cms_pfile/00000960/00748864.pdf. Accessed August 2018
  51. Tsuchihara T, Yoshimoto S, Ishida S, Imaizumi M (2011) Classification of recharge sources of groundwater in a paddy dominant alluvial fan based on geochemical and isotopic analyses (in Japanese with English abstract). Bull National Inst Rural Eng 211:21–34Google Scholar
  52. Vanderzalm JL, Jeuken BM, Wischusen JDH, Pavelic P, Le Gal La Salle C, Knapton A, Dillon PJ (2011) Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia. J Hydrol 397(1–2):71–82.  https://doi.org/10.1016/j.jhydrol.2010.11.035 CrossRefGoogle Scholar
  53. Wang Y, Wong KL, Liu Q, Jin Y, Tu J (2012) Improvement of energy efficiency for an open-loop surface water source heat pump system via optimal design of water-intake. Energy Build 51:93–100.  https://doi.org/10.1016/j.enbuild.2012.04.013 CrossRefGoogle Scholar
  54. Waseda A, Nakai N (1983) Isotopic compositions of meteoric and surface waters in central and northeast Japan (in Japanese with English abstract). Chikyukagaku [Geochemistry] 17(2):83–91Google Scholar
  55. Wassenaar LI, Athanasopoulos P, Hendry MJ (2011) Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J Hydrol 41(1–2):37–48.  https://doi.org/10.1016/j.jhydrol.2011.09.032 CrossRefGoogle Scholar
  56. Windhorst D, Waltz T, Timbe E, Frede HG, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17(1):409–419.  https://doi.org/10.5194/hess-17-409-2013 CrossRefGoogle Scholar
  57. Xiao HY, Zhu RG, Lin BN, Liu CQ (2011) Sulfur isotopic signatures in rainwater and moss Haplocladium microphyllum indicating atmospheric sulfur sources in Nanchang City (SE China). Sci Total Environ 409(11):2127–2132.  https://doi.org/10.1016/j.scitotenv.2011.02.011 CrossRefGoogle Scholar
  58. Yabusaki S, Kono T (2012) Characteristics of stable isotopes in precipitation at Kyoto basin (in Japanese with English abstract). Chikyukankyo-Kenkyu 20(14):23–30Google Scholar
  59. Yamada Y, Ueda A (2018) Geochemical hydraulic analysis of groundwater system in the Sabae basin, Fukui prefecture for heat utilization (in Japanese with English abstract). Chikyukagaku [Geochemistry] 52:1–22Google Scholar
  60. Yanagisawa F (2001) Sulfur isotope ratios of non-Sea salt sulfate in balk deposition in Japan (in Japanese with English abstract). Seppyo 64(2):173–184Google Scholar
  61. Yuan R, Song X, Zhang Y, Han D, Wang S, Tang C (2011) Using major ions and stable isotopes to characterize recharge regime of a fault-influenced aquifer in Beiyishui River watershed, North China plain. J Hydrol 405(3–4):512–521.  https://doi.org/10.1016/j.jhydrol.2011.05.048 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nagisa Okakita
    • 1
    • 2
  • Kaname Iwatake
    • 1
    • 3
  • Hiromichi Hirata
    • 1
    • 4
  • Akira Ueda
    • 1
    Email author
  1. 1.Graduate School of Environmental Biology and ChemistryUniversity of ToyamaToyamaJapan
  2. 2.Metoh Kakefu Co. Ltd.GifuJapan
  3. 3.Dia-Consultant Co. Ltd.SaitamaJapan
  4. 4.Shimizu CorporationNiigataJapan

Personalised recommendations