Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 363–378 | Cite as

Chloride mass balance for estimation of groundwater recharge in a semi-arid catchment of northern Ethiopia

  • Teklebirhan Arefaine Gebru
  • Gebreyesus Brhane TesfahunegnEmail author
Report
  • 74 Downloads

Abstract

Limited scientific information has been published on the application of tools in the geographic information system (GIS) environment to understand factors that influence groundwater recharge. The objectives of the research reported here were to understand the spatial variability of factors that influence groundwater recharge using GIS, and to estimate the amount of groundwater recharge and its spatial distribution in Illala catchment, northern Ethiopia. Reconnaissance surveys coupled with satellite imagery were used to collect data related to water, dry-deposition and hydrogeology from the study catchment. The data analysis involved geo-statistics. The chloride mass balance (CMB) method was applied to estimate mean groundwater recharge. The study catchment is distinguished by a semi-arid climate (average aridity index value of 0.35) and it is dominated by limestone-shale-marl intercalation. Mean chloride concentration in rainwater ranges from 0.4 to 1.28 mg/L, while values in dry deposition vary from 1.78 to 1.82 mg/m2. Groundwater and runoff chloride concentration ranges are 1.4–31.96 mg/L and 0.60–1.56 mg/L, respectively. Mean annual groundwater recharge estimated by the CMB method varies from 6.1 to 288.3 mm, and the mean groundwater recharge represents 11.7% of the 548 mm mean annual rainfall. The CMB-derived groundwater recharge estimation showed a nearly comparable value with the recharge estimated by other approaches. More effort should be made to boost groundwater recharge using various recharge enhancing techniques such as constructing artificial recharge wells and water harvesting structures, targeting areas with the lowest recharge.

Keywords

Chloride Groundwater statistics Satellite imagery Water supply Ethiopia 

Bilan massique des chlorures pour estimer la recharge des eaux souterraines dans un bassin semi-aride du Nord de l’Ethiopie

Résumé

Des informations scientifiques limitées ont été publiées sur l’application d’outils associés à un système d’information géographique (SIG) pour comprendre les facteurs qui influent sur la recharge des eaux souterraines. Les objectifs de la recherche présentés ici étaient de comprendre la variabilité spatiale des facteurs qui influencent la recharge des eaux souterraines à l’aide d’un SIG, et d’estimer la quantité de la recharge et sa distribution spatiale dans le bassin versant de l’Illala, dans le Nord de l’Ethiopie. Des prospections de reconnaissance couplées à l’imagerie satellitaire ont été utilisées pour collecter des données relatives à l’eau, aux dépôts secs et à l’hydrogéologie du bassin versant étudié. L’analyse des données implique la géostatistique. La méthode du bilan massique des chlorures (BMC) a été appliquée pour estimer la recharge moyenne des eaux souterraines. Le bassin étudié se distingue par un climat semi-aride (valeur moyenne de l’indice d’aridité de 0.35) et il est. dominé par des intercalations de calcaires, schistes et marnes. La concentration moyenne en chlorures dans l’eau de pluie varie entre 0.4 et 1.28 mg/L, alors que les valeurs dans les dépôts secs sont comprises entre 1.78 et 1.82 mg/m2. Les concentrations des chlorures des eaux souterraines et d’eaux de ruissellement s’étendent sur une gamme de valeurs comprises entre 1.4 et 31.96 mg/L et entre 0.60 et 1.56 mg/L, respectivement. La recharge annuelle moyenne des eaux souterraines estimée par la méthode BMC varie de 6.1 à 288.3 mm, et elle représente 11.7% des précipitations annuelles moyennes qui s’élèvent à 548 mm. L’estimation de la recharge des eaux souterraines à partir de la méthode BMC indique une valeur presque comparable avec la recharge estimée par d’autres approches. Des efforts supplémentaires devraient être déployés pour stimuler la recharge des eaux souterraines à l’aide de diverses techniques, telles que la construction de puits pour la recharge artificielle et de structures de collecte d’eau, en ciblant les zones ayant la plus faible recharge.

Balance de masa de cloruro para la estimación de la recarga de agua subterránea en una cuenca semiárida del Norte de Etiopía

Resumen

Se publicó una limitada información científica sobre la aplicación de herramientas en el entorno de un sistema de información geográfica (SIG) para comprender los factores que influyen en la recarga del agua subterránea. Los objetivos de la investigación en este trabajo fueron comprender la variabilidad espacial de los factores que influyen en la recarga del agua subterránea utilizando SIG, y estimar la cantidad de recarga del agua subterránea y su distribución espacial en la cuenca de Illala, al norte de Etiopía. Los relevamientos de reconocimiento junto con las imágenes de satélite se utilizaron para recolectar datos relacionados con el agua, la deposición seca y la hidrogeología de la cuenca del estudio. El análisis de datos involucró datos geoestadísticos. El método de balance de masa de cloruro (CMB) se aplicó para estimar la recarga media del agua subterránea. La cuenca de estudio se distingue por un clima semiárido (valor de índice de aridez promedio de 0.35) y está dominado por la intercalación de caliza-pizarra-marga. La concentración promedio de cloruro en el agua de lluvia oscila entre 0.4 y 1.28 mg/L, mientras que los valores en la deposición seca varían de 1.78 a 1.82 mg/m2. Los rangos de concentración del agua subterránea y del agua de escorrentía son 1.4–31.96 mg/L y 0.60–1.56 mg/L, respectivamente. La recarga media anual del agua subterránea estimada por el método CMB varía de 6.1 a 288.3 mm, y la recarga media del agua subterránea representa el 11.7% de la precipitación media anual de 548 mm. La estimación de recarga del agua subterránea derivada de CMB mostró un valor casi comparable con la recarga estimada por otros enfoques. Deberían realizarse más esfuerzos para aumentar la recarga del agua subterránea utilizando diversas técnicas de mejora de la recarga, como la construcción de pozos de recarga artificial y estructuras de captación de agua, dirigidas a las áreas con la recarga más baja.

利用氯化物质量平衡估算埃塞俄比亚北部半干旱流域的地下水补给量

摘要

有关地理信息系统环境下应用工具了解影响地下水补给因素的科学信息发表的有限。这里所论述的研究的目的就是利用地理信息系统了解影响地下水补给的因素的空间变化,估算埃塞俄比亚北部Illala流域地下水补给量以及空间分布。利用勘测和卫星图像收集研究区有关水、干沉积和水文地质方面的数据。数据分析设计到地质统计学。应用氯化物质量平衡法估算平均地下水补给力量。研究区气候特征为半干旱(平均干旱指数值为0.35),石灰岩-页岩-泥灰夹层为主。雨水中的平均氯化物浓度为0.4 至 1.28 mg/L,而干沉积值1.78 to 1.82 mg/m2。地下水和径流的氯化物浓度分别为1.4–31.96 mg/L 及 0.60–1.56 mg/L。通过氯化物质量平衡法估算的平均年地下水补给量6.1 至 288.3 mm,平均地下水补给量占平均每年降雨量548 mm 的11。7%。通过氯化物质量平衡法得到的地下水补给量估算数显示与其他方法估算出的补给量几乎一致。应该进一步努力采用各种补给增强技术诸如建设人工补给井和集水设施,把补给量最少的地区作为重点目标。

Balanço de massa de cloreto para estimativa da recarga de águas subterrâenas em uma bacia semiárida do norte da Etiópia

Resumo

Informações cientificas limitadas tem sido publicadas sobre a aplicação de ferramentas no ambiente de Sistema de Informação Geográfica (SIG) para entender os fatores que influenciam a recarga das águas subterrâneas. Os objetivos da pesquisa aqui relatados foram comprender a variabilidade espacial de fatores que influenciam a recarga das águas subterrâneas usando SIG e estimar a quantiadade de recarga e sua distribuição espacial na bacia Illala, norte da Etiópia. Pesquisas de reconhecimento combinada com imagens de sateleite foram usadas para coletar dados relacionados a água, depoisção seca e hidrogeologia da bacia do estudo. A analise de dados envolveu geoestatística. O método de balanço de masssa de cloreto (BMC) foi aplicado para estimar a recarga média das águas subterrâneas. A bacia em estudo é caracterizada por um clima semiárido (valor médio do índice de ridez de 0.35) e é dominada pela intercalação de marga e xisto calcário. A concentração média de cloreto na água da chuva variou de 0.4 a 1.28 mg/L, enquanto valores da depoisição seca variaram de 1.78 a 1.82 mg/m2. O intervalo da concentração de cloreto nas águas subterrâneas e no escoamento são 1.4–31.96 mg/L e 0.60–1.56 mg/L, respectivamente. A recarga média anual etimada pelo método BMC varia de 6.1 a 288.3 mm e a recarga média representa 11.7% da precipitação média anual de 548 mm. A estimativa de recarga derivada de BMC mostrou um valor comparavel com a recarga estimada com outras abordagens. Mais esforçoes devem ser feitos para aumentar a recarga da água subterrâneas usando várias técnicas de melhoria de recarga artificial, como a construção de poços de recarga e estruturas de capitação de água, visando áreas com menor recarga.

Notes

Acknowledgements

The authors thank the people in Illala catchment who participated during data collection and the local development agents and administration at different levels, for the success of this research project. The authors gratefully acknowledge the Ethiopian meteorological services of Mekelle branch office and Tekeze Deep Well Drilling Company who provided their support during the study. The authors are also grateful to Aksum University (Ethiopia) for the support given for the 1st author.

Funding information

The authors are grateful for the financial support of the Ethiopian Ministry of Education.

References

  1. Abrha AZ (2009) Assessment of spatial and temporal variability of river discharge, sediment yield and sediment-fixed nutrient export in Geba River catchment, northern Ethiopia. PhD Thesis, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  2. Alcala FJ, Custodio E (2008) Atmospheric chloride deposition in continental Spain. Hydrol Process 22(18):3636–3650CrossRefGoogle Scholar
  3. Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195CrossRefGoogle Scholar
  4. Batelaan O, DeSmedt F (2007) GIS based recharge estimation by coupling surface-subsurface water balance. J Hydrol 337:337–355CrossRefGoogle Scholar
  5. Biggs AJW (2006) Rainfall salt accessions in the Queensland Murray-Darling Basin. Aust J Soil Res 44(6):637–645CrossRefGoogle Scholar
  6. Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294:241–250CrossRefGoogle Scholar
  7. Cartwright I, Weaver TR (2005) Hydro geochemistry of the Goulburn Valley region of the Murray basin, Australia: implications for flow path and resource vulnerability. Hydrogeol J 13:752–770CrossRefGoogle Scholar
  8. Chekol AD (2006) Modeling of hydrology and soil erosion of upper Awash River basin, Ethiopia. PhD Thesis, University of Bonn, Bonn, GermanyGoogle Scholar
  9. Crosbie, R, Callum J, Harrington G (2009) Estimation of groundwater recharge and discharge across northern Australia. 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009. http://mssanz.org.au/modsim09. Accessed August 2018
  10. Crosbie R, Jolly L, Leaney F, Petheram C, Wohling D (2010) Review of Australian groundwater recharge studies. Report series, CSIRO, Clayton, Australia, 81 ppGoogle Scholar
  11. Custodio E (2010) Estimation of aquifer recharge by means of atmospheric chloride deposition balance in the soil. Contrib Sci 6(1):81–97.  https://doi.org/10.2436/20.7010.01.86 Google Scholar
  12. Diouf OC, Faye SC, Diedhiou M, Kaba M, Faye S, Gaye CB, Faye A, Englert A, Wohnlich S (2012) Combined uses of water-table fluctuation (WTF), chloride mass balance (CMB) and environmental isotopes methods to investigate groundwater recharge in the Thiaroye sandy aquifer (Dakar, Senegal). Afr J Environ Sci Technol 6(11):425–437CrossRefGoogle Scholar
  13. Edmunds WM, Gaye CB (1994) Estimating the spatial variability of groundwater recharge in the Sahel using chloride. J Hydrol 156:47–59CrossRefGoogle Scholar
  14. Eriksson E, Khunakasem V (1969) Chloride concentrations in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J Hydrol 7:178–197CrossRefGoogle Scholar
  15. Estifanos H (2005) Groundwater chemistry and recharge rate in crystalline rocks of the Eritrean highland. MSc Thesis, KTH Land and Water Resources Engineering, StockholmGoogle Scholar
  16. Foster SSD, Chilton PJ, Moench M, Cardy F, Schiffler M (2000) Groundwater in rural development: facing the challenges of supply and resource sustainability. Technical paper no. 463, World Bank, Washington, DCGoogle Scholar
  17. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  18. Gebreryfael H (2008) Groundwater resource assessment through distributed steady-state flow modeling, Aynalem well field. Mekelle, Ethiopia. MSc Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The NetherlandsGoogle Scholar
  19. Getachew HA (2008) Groundwater contribution and recharge estimation in the Upper Blue Nile flows, Ethiopia. MSc Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The NetherlandsGoogle Scholar
  20. Gotway CA, Ferguson RB, Hergert GW, Peterson TA (1996) Comparisons of kriging and inverse distance methods for mapping soil parameters. Soil Sci Soc Am J 60:1237–1247CrossRefGoogle Scholar
  21. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  22. Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large semi-arid groundwater system: Murray Basin. Aust Mar Freshw Res 52(1):41–52CrossRefGoogle Scholar
  23. Hillel D (1994) Rivers of Eden: the struggle for water and the quest for peace in the Middle East. Oxford University Press, New YorkGoogle Scholar
  24. Houston J (2007) Recharge to groundwater in the Turi basin northern Chile: an evaluation based on tritium and chloride mass balance techniques. J Hydrol 334:534–544CrossRefGoogle Scholar
  25. Huang T, Pang Z (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profile at Guyuan and Xifeng in the Loes Plateau of China. Hydrogeol J 19(1):177–186.  https://doi.org/10.1007/s10040-010-0643-8 CrossRefGoogle Scholar
  26. Jianhua P, Craig N, Xiaohua W (2014) Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, south interior British Columbia, Canada. J Chem Pharm Res 6(1):383–388Google Scholar
  27. Joachim W, Tatjana W (2005) Handbook of ion chromatography, 3rd edn. Wiley, Hoboken, NJ, 931ppGoogle Scholar
  28. Kassa G (2011) Aquifer characterization and groundwater quality for irrigation in Illala catchment, northern Ethiopia. Unpublished MSc Thesis, Mekelle University, EthiopiaGoogle Scholar
  29. Kayaalp AS (2001) Application of rainfall chemistry and isotope data to hydro-meteorological modelling, PhD Thesis, Flinders University, Adelaide, Australia, 273 ppGoogle Scholar
  30. Keywood MD, Chivas AR, Fifield LK, Cresswell RG, Ayres GP (1997) The accession of chloride to the western half of the Australian continent. Aust J Soil Res 35:1177–1189CrossRefGoogle Scholar
  31. Lerner DN, Issor AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Contributions to Hydrogeology, vol 8. IAH, Balkema, Dordrecht, The Netherlands, 345 ppGoogle Scholar
  32. Lin D, Lin M, Liang X, Zhan H (2013) Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate. J Hydrogeol 21:1469–1480CrossRefGoogle Scholar
  33. MacDonald AM, Bonsor HC, Ó Dochartaigh BE, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7(2):1–7.  https://doi.org/10.1088/1748-9326/7/2/024009 CrossRefGoogle Scholar
  34. McNamara JP (2005) An assessment of the potential for using water and chloride budgets to estimate groundwater recharge in granitic, mountain environments. Final Report Submitted to Idaho Department of Environmental Quality, Boise State University, Boise, IdahoGoogle Scholar
  35. Mizell SA, Russell CE, Kluesner TL (2007) Reconnaissance estimation of groundwater recharge to selected hydrographic basins of eastern Nevada and western Utah using the chloride mass balance method. J Hydrol 106(1–2):55–78Google Scholar
  36. Naranjo G, Cruz-Fuentes T, Cabrera MC, Custodio E (2015) Estimating natural recharge by means of chloride mass balance in a volcanic aquifer: northeastern Gran Canaria (Canary Islands, Spain). Water 7:2555–2574.  https://doi.org/10.3390/7062555 CrossRefGoogle Scholar
  37. Nedaw D (2010) Water balance and groundwater quality of Koraro area of Tigray, northern Ethiopia. Momona Ethiopian J Sci 2(2):110–127CrossRefGoogle Scholar
  38. Olson SR, Kemper WD (1968) Movement of nutrients to plant roots. Adv Agron 20:91–151CrossRefGoogle Scholar
  39. Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Prog Phys Geogr 35(4):465–492CrossRefGoogle Scholar
  40. Saghravani S, Yusoff I, Wan Md Tahir W, Othman Z (2014) Comparison of water table fluctuation and chloride mass balance methods for recharge estimation in a tropical rainforest climate. Environ Earth Sci.  https://doi.org/10.1007/s12665-014-3727-2
  41. Saumya S, Srivastava RK (2011) Geology of Allahabad (India) and assessment of recharge for sustainability. Proceedings of Indian Geotechnical Conference, Kochi, India, December 2011 (paper no. R-014)Google Scholar
  42. Scanlon BR (1991) Evaluation of moisture flux from chloride data in desert soils. J Hydrol 128:137–156CrossRefGoogle Scholar
  43. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  44. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370CrossRefGoogle Scholar
  45. Shivanna AR, Musthafa A (2015) Geological structures that have control on groundwater occurrence of Chamarajanagar Taluk, Chamarajanagar district, southern Karnataka. Int J Geo Earth Environ Sci 5(1):1–9Google Scholar
  46. Simmers H, Kruseman G, Rushton K (1997) Recharge of phreatic aquifer in semi-arid areas. International Contributions to Hydrogeology 19, IAH, Balkema, Dordrecht, The NetherlandsGoogle Scholar
  47. Subyan A, Sen Z (2006) Refined chloride mass balance method and its application in Saudi Arabia. Hydrol Process 20:4373–4380CrossRefGoogle Scholar
  48. Tamene L, Vlek PLG, Park SJ, Dikau R (2005) Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia. Geomorphology 76(1–2):76–91.  https://doi.org/10.1016/j.geomorph.2005.10.007 Google Scholar
  49. Teferi GG Hussien (2009) Hydrogeology of the Aynalem Wellfield through transient flow modeling (Mekelle, Ethiopia). MSc Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The NetherlandsGoogle Scholar
  50. Tesfaye C, Gebrestadikan E (1982) Hydrogeology of the Mekelle area (N D37–11). Ministry of Mines and Energy, Ethiopian Institute of Geological Surveys, Addis Ababa, EthiopiaGoogle Scholar
  51. Ting CS, Kerh T, Liao CJ (1998) Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeol J 6:282–292CrossRefGoogle Scholar
  52. Wollenhaupt NC, Wolkowski RP, Clayton MK (1994) Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J Prod Agric 7:441–448CrossRefGoogle Scholar
  53. Yirga T (2004) Groundwater modeling: a case study on volcanic water supply aquifer/Akaki well field of the city Addis Ababa. Int. Conf. and exhibition on groundwater in Ethiopia. Addis Abba, Ethiopia, 2004Google Scholar
  54. Yongxin X, Beekman HE (2003) Groundwater recharge estimation in Southern Africa. Paris: United Nations Educational Scientific and Cultural Organization, UNESCO IHP Series no. 64, UNESCO, ParisGoogle Scholar
  55. Zeiler M (2010) Modeling our world: the ESRI guide to geodatabase concepts. ESRI, Redlands CAGoogle Scholar
  56. Zeru G (2008) Evaluation of groundwater potential using modeling (mudflow). MSc Thesis, Mekelle University, EthiopiaGoogle Scholar
  57. Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3):701–708CrossRefGoogle Scholar
  58. Zhu C, Winterle JR, Love EI (2003) Late Pleistocene and Holocene groundwater recharge from the chloride mass balance method and chlorine-36 data. J Water Res 39(7):1182Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Teklebirhan Arefaine Gebru
    • 1
  • Gebreyesus Brhane Tesfahunegn
    • 2
    Email author
  1. 1.Department of Water Resource and Irrigation Engineering, School of Water TechnologyAksum UniversityShireEthiopia
  2. 2.Department of Soil Resources and Watershed Management, College of AgricultureAksum UniversityShireEthiopia

Personalised recommendations