Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 31–53 | Cite as

Review: The projected hydrologic cycle under the scenario of 936 ppm CO2 in 2100

  • Bin Hu
  • Yanguo Teng
  • Yilun Zhang
  • Chen ZhuEmail author
Paper
  • 111 Downloads

Abstract

A host of environmental consequences will result from global warming, but arguably, the effect on water resources is one of the most consequential. This paper synthesizes results of published modeling studies that examined the groundwater system and hydrologic cycle under the Representative Concentration Pathway (RCP) 8.5 scenario (CO2 at 936-ppm level at year 2100). Natural replenishment of groundwater occurs predominantly from infiltration of precipitation and surface impoundments. Therefore, the first stage of the study was to review a changed hydrologic cycle under RCP 8.5 in terms of influence from (1) precipitation, evapotranspiration, and soil moisture; (2) surface water and its interaction with groundwater; (3) extreme hydrologic events, and (4) teleconnection patterns. The general pattern of climate impact on groundwater resources follows the precipitation pattern with depletion in tropical and/or subtropical regions and with increase in the high-latitude regions of the Northern and Southern Hemispheres. However, regional variability also corresponds to the heterogenous impact of climate changes on regional distribution of precipitation and evapotranspiration, localized interaction between surface water and groundwater, and distances from the oceans with rising sea level. The decline of the water table in many areas may seriously reduce irrigated crop production and adversely impact groundwater-dependent ecosystems. Relatively fewer studies have been conducted on climate-change impacts on groundwater resources compared to surface-water systems, and the uncertainties on the recharge estimates are large. There appears to be an urgent need for including groundwater systems in climate impact assessment and in climate mitigation strategies.

Keywords

Climate change RCP 8.5 Hydrologic cycle Groundwater recharge/water budget Water resources management 

Article de synthèse: Le cycle hydrologique prévisionnel dans le scénario de 936 ppm de CO2 en 2100

Résumé

Une foule de conséquences environnementales résultera du réchauffement global, mais sans doute l’effet sur les ressources en eau sera l’un des plus conséquents. Le présent article fait la synthèse du résultat des études de modélisation publiées qui examinent le système hydrogéologique et le cycle hydrologique dans le scénario 8.5 de la Voie de Concentration Représentative (VCR) (CO2 de 936 ppm en 2100). La réalimentation naturelle des eaux souterraines se produit principalement par infiltration de la pluie et les retenues de surface. Ainsi, la première étape de l’étude a consisté à réexaminer un cycle hydrologique modifié dans le scénario 8.5 de VCR, en termes d’influence (1) des précipitations, de l’évapotranspiration et de l’humidité des sols; (2) de l’eau de surface et de son interaction avec les eaux souterraines; (3) des évènements hydrologiques extrêmes et (4) des configurations de téléconnexion. Le modèle général d’impact du climat sur les ressources en eaux souterraines suit le modèle des précipitations, avec une diminution dans les régions tropicales et/ou subtropicales et une augmentation dans les régions de latitude élevée des hémisphères Nord et Sud. Cependant, la variabilité régionale correspond aussi à l’impact hétérogène du changement climatique sur la distribution régionale des précipitations et de l’évapotranspiration, l’interaction entre les eaux de surfaces et les eaux souterraines à l’échelle locale, et les distances aux océans dont le niveau est. en élévation. La baisse de la surface piézométrique dans beaucoup de régions peut sérieusement réduire la production des cultures irriguées et impacter défavorablement les écosystèmes qui dépendent des eaux souterraines. Relativement moins d’études ont été réalisées sur les impacts du changement climatique sur les ressources en eau souterraine que sur les systèmes d’eau de surface, et les incertitudes sur les estimations de la recharge sont importantes. Il semble y avoir un besoin urgent d’intégrer les systèmes hydrogéologiques dans l’évaluation des impacts climatiques et dans les stratégies d’atténuation du climat.

Revisión: El ciclo hidrológico proyectado en el escenario de 936 ppm de CO2 en 2100

Resumen

El calentamiento global provocará una serie de consecuencias medioambientales, pero podría decirse que el efecto sobre los recursos hídricos es uno de los más importantes. Este documento sintetiza los resultados de los estudios de modelado publicados que examinaron el sistema de agua subterránea y el ciclo hidrológico en el escenario de Trayectorias de Concentraciones Representativas (RCP) 8.5 (CO2 a nivel de 936 ppm en el año 2100). La reposición natural de las aguas subterráneas se produce predominantemente por infiltración de precipitaciones y embalses superficiales. Por lo tanto, la primera etapa del estudio fue revisar un ciclo hidrológico modificado bajo RCP 8.5 en términos de influencia de (1) precipitación, evapotranspiración y humedad del suelo; (2) agua superficial y su interacción con aguas subterráneas; (3) eventos hidrológicos extremos, y (4) patrones de teleconexión. El patrón general de impacto climático en los recursos de agua subterránea sigue el patrón de precipitación con disminución en las regiones tropicales y/o subtropicales y con el aumento en las regiones de alta latitud de los hemisferios norte y sur. Sin embargo, la variabilidad regional también corresponde al impacto heterogéneo de los cambios climáticos en la distribución regional de la precipitación y la evapotranspiración, la interacción localizada entre las aguas superficiales y subterráneas, y las distancias desde los océanos con el aumento del nivel del mar. El descenso del nivel freático en muchas áreas puede reducir seriamente la producción de cultivos de regadío y afectar negativamente los ecosistemas dependientes del agua subterránea. Se han realizado relativamente menos estudios sobre los impactos del cambio climático en los recursos de aguas subterráneas en comparación con los sistemas de aguas superficiales, y las incertidumbres en las estimaciones de recarga son grandes. Parece haber una necesidad urgente de incluir sistemas de aguas subterráneas en la evaluación del impacto climático y en las estrategias de mitigación del cambio climático.

综述:在2100年 CO2浓度为936ppm的情况下的水文循环预测

摘要

许多环境影响来自于全球变暖,但是对水资源的影响是最重要的影响之一。本文综述了所发表的模拟研究成果,这些研究成果检验了代表性浓度途径8.5的情况(2100年CO2处在936-ppm水平)下的地下水系统和水文循环。地下水的天然补给主要为降水和地表蓄水的入渗。因此,研究的第一阶段就是根据(1)降水、蒸发蒸腾和土壤水分;(2)地表水及其与地下水相互作用;(3)极端的水文事件;(4)远程并置对比模式论述了代表性浓度途径8.5情况下变化的水文循环。气候对地下水资源的影响模式一般遵循北半球和南半球热带和/或亚热带地区损耗、高纬度地区增加的降水模式。然而,区域变化性还和气候变化对降水和蒸发蒸腾的异质影响、小范围的地表水和地下水相互作用以及距离海平面升起的海洋距离相一致。许多地区的水位下降可引起严重的灌溉作物减产,对依赖于地下水的生态系统带来不利影响。相对于地表水系统,对气候变化对地下水资源的影响研究的相对较少,补给估算值的不确定性很大。似乎迫切需要在气候影响评价中以及在气候缓解策略中包括地下水系统。

Revisão: O ciclo hidrológico projetado sob o cenário de 936 ppm de CO2 em 2100

Resumo

Uma série de consequências ambientais resultará do aquecimento global, mas, sem dúvida, o efeito sobre os recursos hídricos é um dos mais consequentes. Este artigo sintetiza os resultados de estudos de modelagem publicados que examinaram o sistema de águas subterrâneas e o ciclo hidrológico no cenário RPC (Via de Concentração Representativa - Representative Concentration Pathway) 8.5 (CO2 a 936 ppm no ano 2100). O reabastecimento natural das águas subterrâneas ocorre predominantemente pela infiltração de represamentos de precipitação e de superfície. Portanto, a primeira etapa do estudo foi revisar um ciclo hidrológico modificado sob a RCP 8.5 em termos de influência de (1) precipitação, evapotranspiração e umidade do solo; (2) águas superficiais e sua interação com as águas subterrâneas; (3) eventos hidrológicos extremos e (4) padrões de teleconexão. O padrão geral de impacto climático sobre os recursos hídricos subterrâneos segue o padrão de precipitação com depleção em regiões tropicais e/ou subtropicais e com aumento nas regiões de alta latitude dos hemisférios norte e sul. No entanto, a variabilidade regional também corresponde ao impacto heterogêneo das mudanças climáticas na distribuição regional de precipitação e evapotranspiração, interação localizada entre águas superficiais e subterrâneas e distâncias dos oceanos com o aumento do nível do mar. O declínio do lençol freático em muitas áreas pode reduzir seriamente a produção de culturas irrigadas e afetar adversamente os ecossistemas dependentes das águas subterrâneas. Relativamente menos estudos foram realizados sobre os impactos da mudança climática nos recursos hídricos subterrâneos em comparação com os sistemas de águas superficiais, e as incertezas sobre as estimativas de recarga são grandes. Parece haver uma necessidade urgente de incluir sistemas de água subterrânea na avaliação do impacto climático e nas estratégias de mitigação do clima.

Notes

Acknowledgements

Thanks go to Anne Hereford for editing.

Funding information

This research is partially funded by the Grand Challenge Project of the Indiana University: Prepared for Environmental Change. BH acknowledges the support from the China Scholarship Council.

References

  1. Adams RM, McCarl BA, Dudek DJ, Glyer JD (1988) Implications of global climate change for western agriculture. Western J Agr Econ 13(2):348–356Google Scholar
  2. Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30Google Scholar
  3. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5(12):853–861.  https://doi.org/10.1038/ngeo1617 Google Scholar
  4. Allen D, Cannon A, Toews M, Scibek J (2010) Variability in simulated recharge using different GCMs. Water Resour Res 46(10).  https://doi.org/10.1029/2009WR008932
  5. Allen L, Boote K, Jones J, Jones P, Valle R, Acock B, Rogers H, Dahlman R (1987) Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and seed yield of soybean. Global Biogeochem Cy 1(1):1–14.  https://doi.org/10.1029/GB001i001p00001 Google Scholar
  6. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232.  https://doi.org/10.1038/nature01092 Google Scholar
  7. Ali R, McFarlane D, Varma S, Dawes W, Emelyanova I, Hodgson G (2012) Potential climate change impacts on the water balance of regional unconfined aquifer systems in South-Western Australia. Hydrol Earth Syst Sci 16:4581–4601.  https://doi.org/10.5194/hess-16-4581-2012 Google Scholar
  8. Arheimer B, Andréasson J, Fogelberg S, Johnsson H, Pers CB, Persson K (2005) Climate change impact on water quality: model results from southern Sweden. Ambio 34(7):559–566.  https://doi.org/10.1579/0044-7447-34.7.559 Google Scholar
  9. Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364.  https://doi.org/10.1016/j.jhydrol.2013.02.010 Google Scholar
  10. Arnell NW, Lloyd-Hughes B (2014) The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim Chang 122(1–2):127–140.  https://doi.org/10.1007/s10584-013-0948-4 Google Scholar
  11. Bakker M, Bartholomeus R, Ferre T (2013) Groundwater recharge: processes and quantification. Hydrol Earth Syst Sci 17(7):2653–2655.  https://doi.org/10.5194/hess-17-2653-2013 Google Scholar
  12. Bala G, Duffy P, Taylor K (2008) Impact of geoengineering schemes on the global hydrological cycle. PNAS 105(22):7664–7669.  https://doi.org/10.1073/pnas.0711648105 Google Scholar
  13. Barnett T, Malone R, Pennell W, Stammer D, Semtner B, Washington W (2004) The effects of climate change on water resources in the west: introduction and overview. Clim Chang 62:1–11.  https://doi.org/10.1023/B:CLIM.0000013695.21726.b8 Google Scholar
  14. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309.  https://doi.org/10.1038/nature04141 Google Scholar
  15. Basso B, Giola P, Dumont B, Migliorati MDA, Cammarano D, Pruneddu G, Giunta F (2016) Tradeoffs between maize silage yield and nitrate leaching in a Mediterranean nitrate-vulnerable zone under current and projected climate scenarios. PLoS One 11(1):e0146360.  https://doi.org/10.1371/journal.pone.0146360 Google Scholar
  16. Beniston M, Stephenson DB, Christensen OB, Ferro CA, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95.  https://doi.org/10.1007/s10584-006-9226-z Google Scholar
  17. Bergström S, Carlsson B, Gardelin M, Lindström G, Pettersson A, Rummukainen M (2001) Climate change impacts on runoff in Sweden: assessments by global climate models, dynamical downscaling and hydrological modelling. Clim Res 16(2):101–112.  https://doi.org/10.3354/cr016101 Google Scholar
  18. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) IPCC, 2007: climate change 2007—synthesis report IPCC. IPCC, GenevaGoogle Scholar
  19. Bertrand G, Celle-Jeanton H, Laj P, Rangognio J, Chazot G (2008) Rainfall chemistry: long range transport versus below cloud scavenging—a two-year study at an inland station (Opme, France). J Atmos Chem 60(3):253–271.  https://doi.org/10.1007/s10874-009-9120-y Google Scholar
  20. Betts R, Cox P, Collins M, Harris P, Huntingford C, Jones C (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78:157–175.  https://doi.org/10.1007/s00704-004-0050-y Google Scholar
  21. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DM (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041.  https://doi.org/10.1038/nature06045 Google Scholar
  22. Bloomfield J, Marchant B (2013) Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol Earth Syst Sci 17(12):4769–4787.  https://doi.org/10.5194/hess-17-4769-2013 Google Scholar
  23. Bloomfield J, Williams R, Gooddy D, Cape J, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater: a UK perspective. Sci Total Environ 369(1–3):163–177.  https://doi.org/10.1016/j.scitotenv.2006.05.019 Google Scholar
  24. Bloomfield JP, Marchant BP, Bricker SH, Morgan RB (2015) Regional analysis of groundwater droughts using hydrograph classification. Hydrol Earth Syst Sci 19(10):4327–4344.  https://doi.org/10.5194/hess-19-4327-2015 Google Scholar
  25. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J, Frey H, Kargel JS, Fujita K, Scheel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314.  https://doi.org/10.1126/science.1215828 Google Scholar
  26. Bonte M, Zwolsman JJ (2010) Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production. Water Res 44:4411–4424.  https://doi.org/10.1016/j.watres.2010.06.004 Google Scholar
  27. Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P (2002) Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Global Biogeochem Cy 16(2).  https://doi.org/10.1029/2001GB001445
  28. Boyer JN, Dailey SK, Gibson PJ, Rogers MT, Mir-Gonzalez D (2006) The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay. Hydrobiologia 569(1):71–85.  https://doi.org/10.1007/s10750-006-0123-2 Google Scholar
  29. Brooks JP, Adeli A, Read JJ, McLaughlin MR (2009) Rainfall simulation in greenhouse microcosms to assess bacterial-associated runoff from land-applied poultry litter. J Environ Qual 38(1):218–229.  https://doi.org/10.2134/jeq2008.0029 Google Scholar
  30. Cashman A, Nagdee MR (2017) Impacts of climate change on settlements and infrastructure in the coastal and marine environments of Caribbean small island developing states (SIDS). Sci Rev 2017:155–173Google Scholar
  31. Chaturvedi RK, Kulkarni A, Karyakarte Y, Joshi J, Bala G (2014) Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Clim Chang 123(2):315–328.  https://doi.org/10.1007/s10584-013-1052-5
  32. Chen F, Yuan YJ, Chen FH, Wei WS, Yu SL, Chen XJ, Fan ZA, Zhang RB, Zhang TW, Shang HM, Qin L (2013) A 426-year drought history for Western Tian Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo–West Pacific Oceans. The Holocene. 23(8):1095–1104.  https://doi.org/10.1177/0959683613483614 Google Scholar
  33. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701.  https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2 Google Scholar
  34. Christensen JH, Kanikicharla KK, Marshall G, Turner J (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  35. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1137–1216Google Scholar
  36. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, ChHabra A, Defries R, Galloway J, Heimann M (2014) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  37. Cocco V, Joos F, Steinacher M, Frölicher T, Bopp L, Dunne J, Gehlen M, Heinze C, Orr J, Oschlies A (2013) Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10(3):1849–1868.  https://doi.org/10.5194/bg-10-1849-2013 Google Scholar
  38. Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397.  https://doi.org/10.1038/ngeo868 Google Scholar
  39. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  40. Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American southwest and central plains. Sci Adv 1(1):e1400082.  https://doi.org/10.1126/sciadv.1400082 Google Scholar
  41. Cotterman KA, Kendall AD, Basso B, Hyndman DW (2018) Groundwater depletion and climate change: future prospects of crop production in the central High Plains aquifer. Clim Chang 146(1–2):187–200.  https://doi.org/10.1007/s10584-017-1947-7 Google Scholar
  42. Crosbie RS, Dawes WR, Charles SP, Mpelasoka FS, Aryal S, Barron O, Summerell GK (2011) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38(11).  https://doi.org/10.1029/2011GL047657
  43. Crosbie RS, McCallum JL, Walker GR, Chiew FH (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18(7):1639–1656.  https://doi.org/10.1007/s10040-010-0625-x Google Scholar
  44. Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Chang 117(1–2):41–53.  https://doi.org/10.1007/s10584-012-0558-6 Google Scholar
  45. Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145.  https://doi.org/10.1016/0168-1923(86)90054-7 Google Scholar
  46. Dai A (2011) Drought under global warming: a review. WIREs Clim Chang 2(1):45–65.  https://doi.org/10.1002/wcc.81 Google Scholar
  47. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58.  https://doi.org/10.1038/nclimate1633 Google Scholar
  48. Dams J, Salvadore E, Van Daele T, Ntegeka V, Willems P, Batelaan O (2012) Spatio-temporal impact of climate change on the groundwater system, Hydrol Earth Syst Sc. 16: 1517-1531.  https://doi.org/10.5194/hess-16-1517-2012
  49. De Vita P, Allocca V, Manna F, Fabbrocino S (2012) Coupled decadal variability of the North Atlantic oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy). Hydrol Earth Syst Sci 16(5):1389–1399Google Scholar
  50. De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311(5679):1917–1921.  https://doi.org/10.1126/science.1119929 Google Scholar
  51. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546.  https://doi.org/10.1007/s00382-010-0977-x Google Scholar
  52. Destouni G, Darracq A (2009) Nutrient cycling and N2O emissions in a changing climate: the subsurface water system role. Environ Res Lett 4(3):035008.  https://doi.org/10.1088/1748-9326/4/3/035008 Google Scholar
  53. Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54(3):269–293.  https://doi.org/10.1023/A:1016124032231 Google Scholar
  54. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006.  https://doi.org/10.1088/1748-9326/4/3/035006 Google Scholar
  55. Dunn S, Brown I, Sample J, Post H (2012) Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J Hydrol 434:19–35.  https://doi.org/10.1016/j.jhydrol.2012.02.039 Google Scholar
  56. Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41(5):1109–1115.  https://doi.org/10.4319/lo.1996.41.5.1109 Google Scholar
  57. Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydro 284(1–4):244–252.  https://doi.org/10.1016/j.jhydrol.2003.08.005 Google Scholar
  58. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717.  https://doi.org/10.1126/science.1200488 Google Scholar
  59. Essaid HI, Caldwell RR (2017) Evaluating the impact of irrigation on surface water–groundwater interaction and stream temperature in an agricultural watershed. Sci Total Environ 599:581–596.  https://doi.org/10.1016/j.scitotenv.2017.04.205 Google Scholar
  60. Evan AT, Kossin JP, Ramanathan V (2011) Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479:94–97.  https://doi.org/10.1038/nature10552 Google Scholar
  61. Evans C, Monteith D, Cooper D (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137(1):55–71.  https://doi.org/10.1016/j.envpol.2004.12.031 Google Scholar
  62. Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation: the importance of an integrated approach. Sci Total Environ 408(23):5667–5687.  https://doi.org/10.1016/j.scitotenv.2009.05.002 Google Scholar
  63. FAO (2005) AQUASTAT Information System on Water and Agriculture: Online database. In: Food and Agriculture Organization of the United Nations (FAO). Land and Water Development Division, Rome www.fao.org/nr/water/aquastat/maps/index.stm Google Scholar
  64. Favis-Mortlock D, Boardman J (1995) Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena 25(1–4):365–387.  https://doi.org/10.1016/0341-8162(95)00018-N Google Scholar
  65. Feng D, Zheng Y, Mao Y, Zhang A, Wu B, Li J, Tian Y, Wu X (2018) An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources. J Hydrol 557:305–320.  https://doi.org/10.1016/j.jhydrol.2017.12.041 Google Scholar
  66. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345.  https://doi.org/10.1038/nclimate1413 Google Scholar
  67. Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46(10).  https://doi.org/10.1029/2009WR008616
  68. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fisher 17(4):581–613.  https://doi.org/10.1007/s11160-007-9059-5 Google Scholar
  69. Flebbe PA (1993) Comment on Meisner (1990): Effect of climatic warming on the southern margins of the native range of brook trout, Salvelinus fontinalis. Can J Fish Aquat Sci 50(4):883–884.  https://doi.org/10.1139/f90-122 Google Scholar
  70. Fleming SW, Quilty EJ (2006) Aquifer responses to El Niño–Southern Oscillation, Southwest British Columbia. Groundwater 44(4):595–599.  https://doi.org/10.1111/j.1745-6584.2006.00187.x Google Scholar
  71. Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12(1):81–93.  https://doi.org/10.1007/s10040-003-0300-6 Google Scholar
  72. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578.  https://doi.org/10.1002/joc.1556 Google Scholar
  73. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27(2):511–526.  https://doi.org/10.1175/JCLI-D-12-00579.1 Google Scholar
  74. Fu C, Jiang Z, Guan Z, He J, Xu Zf (2008) Regional climate studies of China. Springer, Heidelberg, GermanyGoogle Scholar
  75. Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43(2):485–496.  https://doi.org/10.1111/j.1529-8817.2007.00355.x Google Scholar
  76. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N (2014) Betting on negative emissions. Nat Clim Chang 4:850–853.  https://doi.org/10.1038/nclimate2392 Google Scholar
  77. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario, Earth-Sci Rev 105(3–4):121–139.  https://doi.org/10.1016/j.earscirev.2011.01.006
  78. Gerten D, Lucht W, Ostberg S, Heinke J, Kowarsch M, Kreft H, Kundzewicz ZW, Rastgooy J, Warren R, Schellnhuber HJ (2013) Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environ Res Lett 8(3):034032.  https://doi.org/10.1088/1748-9326/8/3/034032 Google Scholar
  79. Gibble CM, Kudela RM (2014) Detection of persistent microcystin toxins at the land–sea interface in Monterey Bay, California. Harmful Algae 39:146–153.  https://doi.org/10.1016/j.hal.2014.07.004 Google Scholar
  80. Gilbert JM, Maxwell RM, Gochis DJ (2017) Effects of water-table configuration on the planetary boundary layer over the San Joaquin River watershed, California. J Hydrometeorol 18(5):1471–1488.  https://doi.org/10.1175/JHM-D-16-0134.1 Google Scholar
  81. Giordano M (2009) Global groundwater? Issues and solutions. Annu Rev Environ Resour 34:153–178.  https://doi.org/10.1146/annurev.environ.030308.100251 Google Scholar
  82. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model Intercomparison project phase 5. J Adv Model Earth Sy 5:572–597.  https://doi.org/10.1002/jame.20038 Google Scholar
  83. Giorgi F, Bi X (2005) Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys Res Lett 32(21).  https://doi.org/10.1029/2005GL024288
  84. Gleick PH (1998) Water in crisis: paths to sustainable water use. Ecol Appl 8:571–579. https://doi.org/10.1890/1051-0761(1998)008[0571:WICPTS]2.0.CO;2Google Scholar
  85. Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1–2):122–138.  https://doi.org/10.1016/j.jhydrol.2009.04.017 Google Scholar
  86. Golombek R, Kittelsen SA, Haddeland I (2012) Climate change: impacts on electricity markets in Western Europe. Clim Chang 113(2):357–370.  https://doi.org/10.1007/s10584-011-0348-6 Google Scholar
  87. Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23(4):211–219.  https://doi.org/10.1016/j.tree.2007.11.011 Google Scholar
  88. Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Chang 134(3):371–385.  https://doi.org/10.1007/s10584-013-0853-x Google Scholar
  89. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445.  https://doi.org/10.1126/science.1132027 Google Scholar
  90. Gooddy DC, Stuart ME, Lapworth DJ, Chilton PJ, Bishop S, Cachandt G, Knapp M, Pearson T (2005) Pesticide pollution of the Triassic Sandstone aquifer of South Yorkshire. Q J Eng Geol Hydrogeol 38(1):53–63.  https://doi.org/10.1144/1470-9236/04-012 Google Scholar
  91. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560.  https://doi.org/10.1016/j.jhydrol.2011.05.002 Google Scholar
  92. Groffman PM, Gold AJ, Addy K (2000) Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere-Global Chang Sci 2(3–4):291–299.  https://doi.org/10.1016/S1465-9972(00)00018-0 Google Scholar
  93. Gurdak JJ, Hanson RT, McMahon PB, Bruce BW, McCray JE, Thyne GD, Reedy RC (2007) Climate variability controls on unsaturated water and chemical movement, High Plains Aquifer, USA. Vadose Zone J 6(3):533–547.  https://doi.org/10.2136/vzj2006.0087 Google Scholar
  94. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235.  https://doi.org/10.1111/j.1529-8817.2010.00815.x Google Scholar
  95. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99.  https://doi.org/10.1038/nature07051 Google Scholar
  96. Hamududu B, Killingtveit A (2012) Assessing climate change impacts on global hydropower. Energies 5(2):305–322.  https://doi.org/10.3390/en5020305 Google Scholar
  97. Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K (2013) A global water scarcity assessment under shared socio-economic pathways. Hydrol Earth Syst Sci 17(7):2393–2413.  https://doi.org/10.5194/hess-17-2393-2013 Google Scholar
  98. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos Chem Phys 16:3761–3812.  https://doi.org/10.5194/acp-16-3761-2016 Google Scholar
  99. Hanson RT, Flint LE, Flint AL, Dettinger MD, Faunt CC, Cayan D, Schmid W (2012) A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resour Res 48(6).  https://doi.org/10.1029/2011WR010774
  100. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107.  https://doi.org/10.1175/2009BAMS2607.1 Google Scholar
  101. Hayashi A, Akimoto K, Tomoda T, Kii M (2013) Global evaluation of the effects of agriculture and water management adaptations on the water-stressed population. Mitig Adapt Strat Glob Change 18(5):591–618.  https://doi.org/10.1007/s11027-012-9377-3 Google Scholar
  102. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699.  https://doi.org/10.1175/JCLI3990.1 Google Scholar
  103. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RS, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111(9):3292–3297.  https://doi.org/10.1073/pnas.1222469111 Google Scholar
  104. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821.  https://doi.org/10.1038/nclimate1911 Google Scholar
  105. Hiscock K, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266(3–4):139–144.  https://doi.org/10.1016/S0022-1694(02)00158-0 Google Scholar
  106. Holman I, Tascone D, Hess T (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17:1629–1641.  https://doi.org/10.1007/s10040-009-0457-8 Google Scholar
  107. Holman IP, Rivas-Casado M, Bloomfield JP, Gurdak JJ (2011) Identifying non-stationary groundwater level response to North Atlantic Ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeol J 19:1269–1278.  https://doi.org/10.1007/s10040-011-0755-9 Google Scholar
  108. Holman IP, Allen D, Cuthbert M, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20(1):1–4.  https://doi.org/10.1007/s10040-011-0805-3 Google Scholar
  109. Hoppe-Jones C, Oldham G, Drewes JE (2010) Attenuation of total organic carbon and unregulated trace organic chemicals in US riverbank filtration systems. Water Res 44(15):4643–4659.  https://doi.org/10.1016/j.watres.2010.06.022 Google Scholar
  110. Howarth R, Swaney D, Boyer E, Marino R, Jaworski N, Goodale C (2006) The influence of climate on average nitrogen export from large watersheds in the northeastern United States. In: Martinelli LA, Howarth RW (eds) Nitrogen cycling in the Americas: natural and anthropogenic influences and controls. Springer, Dordrecht, The Netherlands, pp 163–186Google Scholar
  111. Hsu PC, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res-Atmos 118(3):1247–1260.  https://doi.org/10.1002/jgrd.50145 Google Scholar
  112. Hu B, Teng Y, Zhai Y, Zuo R, Li J, Chen H (2016) Riverbank filtration in China: a review and perspective. J Hydrol 541:914–927.  https://doi.org/10.1016/j.jhydrol.2016.08.004 Google Scholar
  113. Huntington JL, Niswonger RG (2012) Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour Res 48(11).  https://doi.org/10.1029/2012WR012319
  114. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95.  https://doi.org/10.1016/j.jhydrol.2005.07.003 Google Scholar
  115. Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour Manag 21(5):775–788.  https://doi.org/10.1007/s11269-006-9111-6 Google Scholar
  116. Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385.  https://doi.org/10.1126/science.1183188 Google Scholar
  117. IPCC (2013) Summary for policymakers Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  118. Ito A (2007) Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100. Geophys Res Lett 34(9):L09403.  https://doi.org/10.1029/2007GL029342 Google Scholar
  119. Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK chalk groundwater resources from an ensemble of global climate model projections. J Hydrol 399(1–2):12–28.  https://doi.org/10.1016/j.jhydrol.2010.12.028 Google Scholar
  120. Jang S, Hamm S-Y, Yoon H, Kim G-B, Park J-H, Kim M (2015) Predicting long-term change of groundwater level with regional climate model in South Korea. Geosci J 19(3):503–513.  https://doi.org/10.1007/s12303-015-0002-9 Google Scholar
  121. Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffmann CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21.  https://doi.org/10.1007/s10750-010-0547-6 Google Scholar
  122. Jiang FQ, Zhu C, Mu GJ, Hu RJ, Meng QX (2005) Magnification of flood disasters and its relation to regional precipitation and local human activities since the 1980s in Xinjiang, northwestern China. Nat Hazards 36(3):307–330.  https://doi.org/10.1007/s11069-005-0977-z Google Scholar
  123. Jiang X, Niu GY, Yang ZL (2009) Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J Geophys Res Atmos 114(D6).  https://doi.org/10.1029/2008JD010756
  124. Jiménez-Cisneros B, Oki T, Arnell N, Benito G, Cogley J, Döll P, Jiang T, Mwakalila S (2014) Freshwater resources. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, et al. (eds) Climate change 2014: impacts, adaptation, and vulnerability, part a: global and sectoral aspects. Contribution of Working Group II to the fifth assessment of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 229–269Google Scholar
  125. Johansson O, Aimbetov I, Jarsjö J (2009) Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. J Marine Syst 76:287–295.  https://doi.org/10.1016/j.jmarsys.2008.03.017 Google Scholar
  126. Jönson R (2017) Groundwater drought explained by climate, hydrogeological and environmental controls in southern Sweden. MSC Thesis,, Univ. of Gothenburg, SwedenGoogle Scholar
  127. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338(3–4):237–250.  https://doi.org/10.1016/j.jhydrol.2007.02.036 Google Scholar
  128. Kahinda JM, Taigbenu A, Boroto R (2010) Domestic rainwater harvesting as an adaptation measure to climate change in South Africa. Phys Chem Earth A/B/C 35(13–14):742–751.  https://doi.org/10.1016/j.pce.2010.07.004 Google Scholar
  129. Kahru M, Elmgren R (2014) Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11(13):3619–3633.  https://doi.org/10.5194/bg-11-3619-2014 Google Scholar
  130. Kaste Ø, Wright R, Barkved L, Bjerkeng B, Engen-Skaugen T, Magnusson J, Sælthun N (2006) Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Sci Total Environ 365(1–3):200–222.  https://doi.org/10.1016/j.scitotenv.2006.02.035 Google Scholar
  131. Kingston DG, Todd MC, Taylor RG, Thompson JR, Arnell NW (2009) Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys Res Lett 36(20):L20403.  https://doi.org/10.1029/2009GL040267f Google Scholar
  132. Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IF, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118(8):3053–3065.  https://doi.org/10.1002/jgrd.50258 Google Scholar
  133. Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, Muotka T, Mykrä H, Preda E, Rossi P (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266.  https://doi.org/10.1016/j.jhydrol.2013.06.037 Google Scholar
  134. Knutson T, Tuleya R (1999) Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Clim Dynam 15(7):503–519.  https://doi.org/10.1007/s003820050296 Google Scholar
  135. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava A, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163.  https://doi.org/10.1038/ngeo779 Google Scholar
  136. Koirala S, Hirabayashi Y, Mahendran R, Kanae S (2014) Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environ Res Lett 9:064017.  https://doi.org/10.1088/1748-9326/9/6/064017 Google Scholar
  137. Konzmann M, Gerten D, Heinke J (2013) Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol Sci J 58(1):88–105.  https://doi.org/10.1080/02626667.2013.746495 Google Scholar
  138. Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, Rasmussen D, Strauss BH, Tebaldi C (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2(8):383–406.  https://doi.org/10.1002/2014EF000239 Google Scholar
  139. Kurylyk BL, MacQuarrie KT (2013) The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. J Hydrol 492(7):244–253.  https://doi.org/10.1016/j.jhydrol.2013.03.043 Google Scholar
  140. Kuss AJM, Gurdak JJ (2014) Groundwater level response in US principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952.  https://doi.org/10.1016/j.jhydrol.2014.09.069 Google Scholar
  141. Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464.  https://doi.org/10.1080/07352689891304249 Google Scholar
  142. Leung LR, Huang M, Qian Y, Liang X (2011) Climate–soil–vegetation control on groundwater table dynamics and its feedbacks in a climate model. Clim Dynam 36(1–2):57–81.  https://doi.org/10.1007/s00382-010-0746-x Google Scholar
  143. Li Q, Li P, Li H, Yu M (2015) Drought assessment using a multivariate drought index in the Luanhe River basin of northern China. Stoch Env Res Risk A 29(6):1509–1520.  https://doi.org/10.1007/s00477-014-0982-4 Google Scholar
  144. Manabe S, Wetherald RT, Milly P, Delworth TL, Stouffer RJ (2004) Century-scale change in water availability: CO2-quadrupling experiment. Clim Chang 64(1–2):59–76.  https://doi.org/10.1023/B:CLIM.0000024674.37725.ca Google Scholar
  145. Matear R, Hirst A, McNeil B (2000) Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem Geophy Geosy 1(11):2000GC000086.  https://doi.org/10.1029/2000GC000086 Google Scholar
  146. Matear RJ, Hirst AC (2003) Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Glob Biogeochem Cycles 17(4).  https://doi.org/10.1029/2002GB001997
  147. Maxwell RM, Condon LE (2016) Connections between groundwater flow and transpiration partitioning. Science 353(6297):377–380.  https://doi.org/10.1126/science.aaf7891 Google Scholar
  148. Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1(10):665–669.  https://doi.org/10.1038/ngeo315
  149. Maxwell RM, Putti M, Meyerhoff S, Delfs JO, Ferguson IM, Ivanov V, Kim J, Kolditz O, Kollet SJ, Kumar M (2014) Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res 50(2):1531–1549.  https://doi.org/10.1002/2013WR013725 Google Scholar
  150. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Boston, pp 179–183Google Scholar
  151. Meisner JD (1990) Effect of climatic warming on the southern margins of the native range of brook trout, Salvelinus fontinalis. Can J Fish Aquat Sci 47(6):1065–1070.  https://doi.org/10.1139/f90-122 Google Scholar
  152. Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138.  https://doi.org/10.1016/j.jhydrol.2015.12.027 Google Scholar
  153. Mendicino G, Senatore A, Versace P (2008) A groundwater resource index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J Hydrol 357(3–4):282–302.  https://doi.org/10.1016/j.jhydrol.2008.05.005 Google Scholar
  154. Merz R, Parajka J, Blöschl G (2011) Time stability of catchment model parameters: implications for climate impact analyses. Water Resour Res 47(2). doi  https://doi.org/10.1029/2010WR009505
  155. Mileham L, Taylor RG, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol Sci J 54(4):727–738.  https://doi.org/10.1623/hysj.54.4.727 Google Scholar
  156. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381.  https://doi.org/10.1038/nature09763 Google Scholar
  157. Missimer TM, Ghaffour N, Dehwah AH, Rachman R, Maliva RG, Amy G (2013) Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement, and economics. Desalination 322:37–51.  https://doi.org/10.1016/j.desal.2013.04.021 Google Scholar
  158. Mitchell JF, Wilson C, Cunnington W (1987) On CO2 climate sensitivity and model dependence of results. Q J Roy Meteor Soc 113(475):293–322.  https://doi.org/10.1002/qj.49711347517 Google Scholar
  159. Moeck C, Brunner P, Hunkeler D (2016) The influence of model structure on groundwater recharge rates in climate-change impact. Hydrogeol J 24(5):1171–1184.  https://doi.org/10.1007/s10040-016-1367-1 Google Scholar
  160. Molina-Navarro E, Andersen HE, Nielsen A, Thodsen H, Trolle D (2018) Quantifying the combined effects of land use and climate changes on stream flow and nutrient loads: a modelling approach in the Odense Fjord catchment (Denmark). Sci Total Environ 621:253–264.  https://doi.org/10.1016/j.scitotenv.2017.11.251 Google Scholar
  161. Moore SK, Mantua NJ, Hickey BM, Trainer VL (2009) Recent trends in paralytic shellfish toxins in Puget Sound: relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8(3):463–477.  https://doi.org/10.1016/j.hal.2008.10.003 Google Scholar
  162. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 Google Scholar
  163. Motlagh MS, Ghasemieh H, Talebi A, Abdollahi K (2017) Identification and analysis of drought propagation of groundwater during past and future periods. Water Resour Manag 31(1):109–125.  https://doi.org/10.1007/s11269-016-1513-5 Google Scholar
  164. Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manag 88(3):437–447.  https://doi.org/10.1016/j.jenvman.2007.03.008 Google Scholar
  165. Murdoch PS, Baron JS, Miller TL (2000) Potential effects of climate change on surface‐water quality in north america. J Am Water Resour As 36:347–366.  https://doi.org/10.1111/j.1752-1688.2000.tb04273.x Google Scholar
  166. Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897.  https://doi.org/10.1007/s11269-008-9305-1 Google Scholar
  167. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520.  https://doi.org/10.1126/science.1185782 Google Scholar
  168. Nick FM, Vieli A, Andersen ML, Joughin I, Payne A, Edwards TL, Pattyn F, van de Wal RS (2013) Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497:235–238.  https://doi.org/10.1038/nature12068 Google Scholar
  169. Nishitani L, Chew KK (1984) Recent developments in paralytic shellfish poisoning research. Aquaculture 39(1–4):317–329.  https://doi.org/10.1016/0044-8486(84)90274-6 Google Scholar
  170. NOAA (National Centers for Environmental Information) (2017) State of the climate: global climate report for May 2017. https://www.ncdc.noaa.gov/sotc/global/201705; www.esrl.noaa.gov. Accessed September 26, 2017
  171. Noyes PD, Lema SC (2015) Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr Zool 61(4):669–89.  https://doi.org/10.1093/czoolo/61.4.669 Google Scholar
  172. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986.  https://doi.org/10.1016/j.envint.2009.02.006 Google Scholar
  173. Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J (2001) Managing climate risk. Science 294(5543):786–787Google Scholar
  174. Oelkers EH, Hering JG, Zhu C (2011) Water: is there a global crisis? Elements 7(3):157–162.  https://doi.org/10.2113/gselements.7.3.157 Google Scholar
  175. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072.  https://doi.org/10.1126/science.1128845 Google Scholar
  176. Ordens CM, Post VE, Werner AD, Hutson JL (2014) Influence of model conceptualisation on one-dimensional recharge quantification: Uley South, South Australia. Hydrogeol J 22(4):795–805.  https://doi.org/10.1007/s10040-014-1100-x Google Scholar
  177. Oschlies A, Schulz KG, Riebesell U, Schmittner A (2008) Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochem Cy 22(4):GB4008.  https://doi.org/10.1029/2007GB003147 Google Scholar
  178. Oude Essink GHP, Van Baaren ES, De Louw PG (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46(10).  https://doi.org/10.1029/2009WR008719
  179. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Env Microbiol Rep 1(1):27–37.  https://doi.org/10.1111/j.1758-2229.2008.00004.x Google Scholar
  180. Palmer W (1965) Meteorological drought. Weather Bureau Research Paper no. 45, US Department of Commerce, Washington, DCGoogle Scholar
  181. Pandey DN, Gupta AK, Anderson DM (2003) Rainwater harvesting as an adaptation to climate change. Curr Sci India 85(1):46–59Google Scholar
  182. Park C-K, Byun H-R, Deo R, Lee B-R (2015) Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea. J Hydrol 526:221–230.  https://doi.org/10.1016/j.jhydrol.2014.10.043 Google Scholar
  183. Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  184. Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Advances in Experimental Medicine and Biology, vol 619. Springer, New York, pp 239–258Google Scholar
  185. Peñate B, García-Rodríguez L (2012) Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination 284:1–8.  https://doi.org/10.1016/j.desal.2011.09.010 Google Scholar
  186. Peperzak L (2003) Climate change and harmful algal blooms in the North Sea. Acta Oecol 24:S139–S144.  https://doi.org/10.1016/S1146-609X(03)00009-2 Google Scholar
  187. Plattner GK, Joos F, Stocker TF (2002) Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem CY 16(4):43-1–43-12.  https://doi.org/10.1029/2001GB001746 Google Scholar
  188. Portmann FT, Döll P, Eisner S, Flörke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8(2):024023.  https://doi.org/10.1088/1748-9326/8/2/024023 Google Scholar
  189. Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788.  https://doi.org/10.1126/science.271.5250.785 Google Scholar
  190. Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK, part 1: baseline climate. Clim Chang 93(1–2):177–195.  https://doi.org/10.1007/s10584-008-9464-3 Google Scholar
  191. Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16(6):1137–1150.  https://doi.org/10.1002/hyp.1054 Google Scholar
  192. Pulido-Velazquez M, Peña-Haro S, García-Prats A, Mocholi-Almudever A, Henriquez-Dole L, Macian-Sorribes H, Lopez-Nicolas A (2015) Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha oriental system (Spain). Hydrol Earth Syst Sci 19(4):1677–1693.  https://doi.org/10.5194/hess-19-1677-2015 Google Scholar
  193. Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45(1):105–112.  https://doi.org/10.1007/s00267-009-9393-60 Google Scholar
  194. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94.  https://doi.org/10.1038/ngeo1052 Google Scholar
  195. Radić V, Hock R (2014) Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv Geophys 35(3):813–837.  https://doi.org/10.1007/s10712-013-9262-y Google Scholar
  196. Reyes B, Maxwell RM, Hogue TS (2016) Impact of lateral flow and spatial scaling on the simulation of semi-arid urban land surfaces in an integrated hydrologic and land surface model. Hydrol Process 30(8):1192–1207.  https://doi.org/10.1002/hyp.10683 Google Scholar
  197. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1-2):33–57.  https://doi.org/10.1007/s10584-011-0149-y Google Scholar
  198. Rijsberman FR (2006) Water scarcity: fact or fiction? Agr Water Manage 80(1–3):5–22.  https://doi.org/10.1016/j.agwat.2005.07.001 Google Scholar
  199. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253.  https://doi.org/10.1038/nclimate1385 Google Scholar
  200. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362.  https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
  201. Sabziparvar A, Mirmasoudi S, Tabari H, Nazemosadat M, Maryanaji Z (2011) ENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of Iran. Int J Climatol 31(11):1710–1723.  https://doi.org/10.1002/joc.2187 Google Scholar
  202. Sahoo G, Schladow S, Reuter J, Coats R (2011) Effects of climate change on thermal properties of lakes and reservoirs, and possible implications. Stoch Env Res Risk A 25(4):445–456.  https://doi.org/10.1007/s00477-010-0414-z Google Scholar
  203. Samaniego L, Kumar R, Breuer L, Chamorro A, Flörke M, Pechlivanidis IG, Schäfer D, Shah H, Vetter T, Wortmann M (2017) Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Clim Chang 141(3):435–449.  https://doi.org/10.1007/s10584-016-1778-y Google Scholar
  204. Sarmiento JL, Hughes TM, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249.  https://doi.org/10.1038/30455 Google Scholar
  205. Savard MM (2016) Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth Syst Dynam 7(1):183–202.  https://doi.org/10.5194/esd-7-183-2016 Google Scholar
  206. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109(24):9320–9325.  https://doi.org/10.1073/pnas.1200311109 Google Scholar
  207. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci 11(3):1191–1205.  https://doi.org/10.5194/hess-11-1191-2007 Google Scholar
  208. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ (2014) Multimodel assessment of water scarcity under climate change. PNAS 111(9):3245–3250.  https://doi.org/10.1073/pnas.1222460110 Google Scholar
  209. Schippers P, Lürling M, Scheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett 7(6):446–451.  https://doi.org/10.1111/j.1461-0248.2004.00597.x Google Scholar
  210. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cy 22(1):GB1013.  https://doi.org/10.1029/2007GB002953 Google Scholar
  211. Scholz G, Quinton JN, Strauss P (2008) Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena 72(1):91–105.  https://doi.org/10.1016/j.catena.2007.04.005 Google Scholar
  212. Schwanenberg D, Fan FM, Naumann S, Kuwajima JI, Montero RA, Dos Reis AA (2015) Short-term reservoir optimization for flood mitigation under meteorological and hydrological forecast uncertainty. Water Resour Manag 29(5):1635–1651.  https://doi.org/10.1007/s11269-014-0899-1 Google Scholar
  213. Segan DB, Murray KA, Watson JE (2016) A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Global Ecol Conserv 5:12–21.  https://doi.org/10.1016/j.gecco.2015.11.002 Google Scholar
  214. Seiller G, Anctil F, Perrin C (2012) Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrol Earth Syst Sci 16(4):1171–1189.  https://doi.org/10.5194/hess-1116-1171-2012 Google Scholar
  215. Seitzinger S, Mayorga E, Bouwman A, Kroeze C, Beusen A, Billen G, Van Drecht G, Dumont E, Fekete B, Garnier J (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24(4).  https://doi.org/10.1029/2009GB003587
  216. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161.  https://doi.org/10.1016/j.earscirev.2010.02.004 Google Scholar
  217. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M (2012) Changes in climate extremes and their impacts on the natural physical environment: an overview of the IPCC SREX report. EGU General Assembly 2012, Vienna, 22–27 April, 2012Google Scholar
  218. Seneviratne SI, Wilhelm M, Stanelle T, Hurk B, Hagemann S, Berg A, Cheruy F, Higgins ME, Meier A, Brovkin V (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40(19):5212–5217.  https://doi.org/10.1002/grl.50956 Google Scholar
  219. Serrat-Capdevila A, Valdés JB, Pérez JG, Baird K, Mata LJ, Maddock T III (2007) Modeling climate change impacts–and uncertainty–on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). J Hydrol 347(1–2):48–66.  https://doi.org/10.1016/j.jhydrol.2007.08.028 Google Scholar
  220. Shaffer G, Olsen SM, Pedersen JOP (2009) Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat Geosci 2:105–109.  https://doi.org/10.1038/ngeo420 Google Scholar
  221. Shah T (2009) Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ Res Lett 4:035005.  https://doi.org/10.1088/1748-9326/4/3/035005 Google Scholar
  222. Shanafield M, Cook PG (2014) Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: a review of applied methods. J Hydrol 511:518–529.  https://doi.org/10.1016/j.jhydrol.2014.01.068 Google Scholar
  223. Shang H, Yan J, Zhang X (2011) El Niño–southern oscillation influence on winter maximum daily precipitation in California in a spatial model. Water Resour Res 47(11).  https://doi.org/10.1029/2011WR010415
  224. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105.  https://doi.org/10.1007/s00382-007-0340-z Google Scholar
  225. Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coastal Res 19(3):584–599.  https://doi.org/10.2307/4299200 Google Scholar
  226. Smerdon BD (2017) A synopsis of climate change effects on groundwater recharge. J Hydrol  https://doi.org/10.1016/j.jhydrol.2017.09.047
  227. Sophocleous M (2010) Review: groundwater management practices, challenges, and innovations in the High Plains aquifer, USA: lessons and recommended actions. Hydrogeol J 18(3):559–575.  https://doi.org/10.1007/s10040-009-0540-1 Google Scholar
  228. Sridhar V, Billah MM, Hildreth JW (2017) Coupled surface and groundwater hydrological modeling in a changing climate. Groundwater.  https://doi.org/10.1111/gwat.12610
  229. Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Prentice IC (2013) Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat Clim Chang 3:666–672.  https://doi.org/10.1038/nclimate1864 Google Scholar
  230. Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes: two variations on a general theme. Glob Chang Biol 6(6):663–670.  https://doi.org/10.1046/j.1365-2486.2000.00350.x Google Scholar
  231. Sulis M, Williams JL, Shrestha P, Diederich M, Simmer C, Kollet SJ, Maxwell RM (2017) Coupling groundwater, vegetation, and atmospheric processes: a comparison of two integrated models. J Hydrometeorol 118(5):1489–1511.  https://doi.org/10.1175/JHM-D-16-0159.1 Google Scholar
  232. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93(4):485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 Google Scholar
  233. Taylor I, Burke E, McColl L, Falloon P, Harris G, McNeall D (2013a) The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci 17(6):2339–2358.  https://doi.org/10.5194/hess-17-2339-2013 Google Scholar
  234. Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M (2013b) Ground water and climate change. Nat Clim Chang 3:322–329.  https://doi.org/10.1038/nclimate1744 Google Scholar
  235. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philo Trans Royal Soc London A 365:2053–2075.  https://doi.org/10.1098/rsta.2007.2076 Google Scholar
  236. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering treatment and reuse Boston. McGraw-Hill Higher Education, USGoogle Scholar
  237. Theesfeld I (2010) Institutional challenges for national groundwater governance: policies and issues. Groundwater. 48(1):131–142.  https://doi.org/10.1111/j.1745-6584.2009.00624.x Google Scholar
  238. Thomas T, Jaiswal R, Nayak P, Ghosh N (2015) Comprehensive evaluation of the changing drought characteristics in Bundelkhand region of Central India. Meteorog Atmos Phys 127(2):163–182.  https://doi.org/10.1007/s00703-014-0361-1 Google Scholar
  239. Thorne O, Fenner R (2011) The impact of climate change on reservoir water quality and water treatment plant operations: a UK case study. Water Environ J 25(1):74–87.  https://doi.org/10.1111/j.1747-6593.2009.00194.x Google Scholar
  240. Touma D, Ashfaq M, Nayak MA, Kao S-C, Diffenbaugh NS (2015) A multi-model and multi-index evaluation of drought characteristics in the 21st century. J Hydrol 526:196–207.  https://doi.org/10.1016/j.jhydrol.2014.12.011 Google Scholar
  241. Tremblay L, Larocque M, Anctil F, Rivard C (2011) Teleconnections and interannual variability in Canadian groundwater levels. J Hydrol 410(3–4):178–188.  https://doi.org/10.1016/j.jhydrol.2011.09.013 Google Scholar
  242. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1/2):123–138.  https://doi.org/10.3354/cr00953 Google Scholar
  243. Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22.  https://doi.org/10.1038/nclimate2067 Google Scholar
  244. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog Sustain 22(1):46–56.  https://doi.org/10.1002/ep.670220116 Google Scholar
  245. Van Loon AF, Kumar R, Mishra V (2017) Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time. Hydrol Earth Syst Sc. 21(4):1947–1971.  https://doi.org/10.5194/hess-21-1947-2017 Google Scholar
  246. van Roosmalen L, Christensen BS, Sonnenborg TO (2007) Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone J 6(3):554–571.  https://doi.org/10.2136/vzj2006.0093 Google Scholar
  247. van Vliet MTH, van Beek LPH, Eisner S, Flörke M, Wada Y, Bierkens MFP (2016) Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob Environ Chang 40: 156–170.  https://doi.org/10.1016/j.gloenvcha.2016.07.007 Google Scholar
  248. Van Vliet M, Zwolsman J (2008) Impact of summer droughts on the water quality of the Meuse River. J Hydrol 353(1–2):1–17.  https://doi.org/10.1016/j.jhydrol.2008.01.001 Google Scholar
  249. Van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122(3):415–429.  https://doi.org/10.1007/s10584-013-0974-2 Google Scholar
  250. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F (2011) The representative concentration pathways: an overview. Clim Chang 109(1–2):5–31.  https://doi.org/10.1007/s10584-011-0148-z Google Scholar
  251. Vandenbohede A, Luyten K, Lebbe L (2008) Effects of global change on heterogeneous coastal aquifers: a case study in Belgium. J Coastal Res 24(2A):160–170.  https://doi.org/10.2112/05-0447.1 Google Scholar
  252. Velasco EM, Gurdak JJ, Dickinson JE, Ferré T, Corona CR (2017) Interannual to multidecadal climate forcings on groundwater resources of the US west coast. J Hydrol 11:250–265.  https://doi.org/10.1016/j.ejrh.2015.11.018 Google Scholar
  253. Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index. J Hydrometeorol 11:1033–1043.  https://doi.org/10.1175/2010JHM1224.1 Google Scholar
  254. Vidal J-P, Martin E, Kitova N, Najac J, Soubeyroux J-M (2012) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol Earth Syst Sci 16(8):2935–2955.  https://doi.org/10.5194/hess-16-2935-2012 Google Scholar
  255. Vidal JP, Wade S (2009) A multimodel assessment of future climatological droughts in the United Kingdom. Int J Climatol 29(14):2056–2071.  https://doi.org/10.1002/joc.1843 Google Scholar
  256. von Freyberg J, Moeck C, Schirmer M (2015) Estimation of groundwater recharge and drought severity with varying model complexity. J Hydrol 527:844–857.  https://doi.org/10.1016/j.jhydrol.2015.05.025 Google Scholar
  257. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288.  https://doi.org/10.1126/science.289.5477.284 Google Scholar
  258. Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T (2013) Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40(17):4626–4632.  https://doi.org/10.1002/grl.50686o Google Scholar
  259. Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dynam. 25(7–8):739–753.  https://doi.org/10.1007/s00382-005-0057-9 Google Scholar
  260. Ward S, Memon F, Butler D (2012) Performance of a large building rainwater harvesting system. Water Res 46(16):5127–5134.  https://doi.org/10.1016/j.watres.2012.06.043 Google Scholar
  261. Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 47(2):197–204.  https://doi.org/10.1111/j.1745-6584.2008.00535.x Google Scholar
  262. Whitehead P, Wade AJ, Butterfield D (2009a) Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrol Res 40(2–3):113–122.  https://doi.org/10.2166/nh.2009.078 Google Scholar
  263. Whitehead P, Wilby R, Battarbee R, Kernan M, Wade AJ (2009b) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J. 54(1):101–123.  https://doi.org/10.1623/hysj.54.1.101 Google Scholar
  264. Wittmann AC, Pörtner H-O (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Chang 3:995–1001.  https://doi.org/10.1038/nclimate1982 Google Scholar
  265. Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17:2913–2928.  https://doi.org/10.1002/hyp.1441 Google Scholar
  266. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943.  https://doi.org/10.1126/science.1192666 Google Scholar
  267. Zhu C, Schwartz FW (2011) Hydrogeochemical processes and controls on water quality and water management. Elements 7(3):169–174.  https://doi.org/10.2113/gselements.7.3.169 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Water SciencesBeijing Normal UniversityBeijingChina
  2. 2.Department of Earth and Atmospheric SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations