Advertisement

Hydrogeology Journal

, Volume 27, Issue 1, pp 379–393 | Cite as

Uncertainty assessment of spatial-scale groundwater recharge estimated from unsaturated flow modelling

  • Yueqing XieEmail author
  • Russell Crosbie
  • Craig T. Simmons
  • Peter G. Cook
  • Lu Zhang
Paper
  • 100 Downloads

Abstract

Parameterisation of unsaturated flow models for estimating spatial-scale groundwater recharge is usually reliant on expert knowledge or best-estimated parameters rather than robust uncertainty analysis. This study chose the Campaspe catchment in southeastern Australia as a field example and examined the uncertainty of spatial groundwater recharge by performing uncertainty analysis. The study area was first divided into 13 zones according to different vegetation types, soil groups and precipitation. Individual models were then established for these zones using the biophysically based modelling code WAVES (Water Atmosphere Vegetation Energy and Solutes), which is capable of simulating unsaturated flow. The Monte Carlo method, together with the Latin-Hypercube sampling technique, was employed to perform uncertainty analysis by comparing modelled monthly evapotranspiration (ET) to MODIS ET. The results show that the common one-estimate-per-site approach can still identify the spatial pattern of groundwater recharge in the study area due to the presence of a precipitation pattern. In comparison, the uncertainty analysis not only identifies the spatial pattern, but also provides confidence levels in groundwater recharge that are critical for water resources management. The results also show that recharge absolute uncertainty is directly proportional to the amount of water input, but relative uncertainty in recharge is not. This study indicates that spatial recharge estimation without model calibration or knowledge of model uncertainty could be highly uncertain. MODIS ET can be used to reduce recharge uncertainty, but it is unlikely to lower the recharge uncertainty by a large extent because of the MODIS ET estimation error.

Keywords

Groundwater recharge/water budget Unsaturated zone Numerical modeling Uncertainty analysis 

Evaluation de l’incertitude de la recharge des eaux souterraines à l’échelle spatiale estimée à partir de la modélisation de l’écoulement en zone non saturée

Résumé

Le paramétrage des modèles d’écoulements non saturés pour estimer la recharge des eaux souterraines à l’échelle spatiale dépend habituellement de connaissances d’experts ou de paramètres les mieux estimés plutôt que d’une analyse d’incertitude robuste. Cette étude a choisi le bassin versant de Campaspe dans le sud-est de l’Australie comme un exemple de terrain et a examiné l’incertitude de la recharge spatialisée des eaux souterraines en réalisant une analyse d’incertitude. La zone d’étude a été tout d’abord divisée en 13 zones en considérant les différents types de végétation, de groupes de sol et des précipitations. Des modèles individuels ont été ensuite établis pour ces zones en utilisant le code de modélisation WAVES (Water Athmosphere Vegetation Energy and Solutes) basé sur la biophysique, qui est. capable de simuler les écoulements non saturés. La méthode Monte Carlo, associé à la technique d’échantillonnage Latin-Hypercube, a été employée pour réaliser l’analyse d’incertitude en comparant l’évapotranspiration (ET) modélisée au pas de temps mensuel à l’ET MODIS. Les résultats montrent que l’approche commune à une estimation par site peut encore identifier la configuration spatiale de la recharge des eaux souterraines dans la zone d’étude en raison de la présence d’un modèle de précipitation. En comparaison, l’analyse d’incertitude n’identifie pas seulement une configuration spatiale, mais fournit des niveaux de confidence dans la recharge des eaux souterraines qui sont importantes pour la gestion des ressources en eau. Les résultats indiquent également que l’incertitude absolue concernant la recharge est. directement proportionnelle à la quantité d’eau qui s’infiltre, mais l’incertitude relative dans la recharge ne l’est. pas. Cette étude indique que l’estimation de la recharge à l’échelle spatiale sans calibration du modèle ou sans connaissance de l’incertitude du modèle pourrait être fortement incertaine. MODIS ET peut être utilisé pour réduire l’incertitude sur la recharge, mais il est. peu probable qu’il puisse abaisser l’incertitude sur la recharge en grande partie en raison de l’erreur d’estimation de MODIS ET.

Evaluación de la incertidumbre de la recarga de agua subterránea a escala espacial estimada a partir del modelado del flujo no saturado

Resumen

La parametrización de los modelos de flujo no saturado para estimar la recarga del agua subterránea a escala espacial generalmente depende del conocimiento experto o de los parámetros mejor estimados en lugar de un sólido análisis de incertidumbre. Este estudio eligió la cuenca de drenaje de Campaspe en el sureste de Australia como un ejemplo de campo y examinó la incertidumbre de la recarga espacial del agua subterránea mediante la realización de un análisis de incertidumbre. El área de estudio se dividió en principio en 13 zonas según los diferentes tipos de vegetación, los grupos de suelos y la precipitación. Luego se establecieron modelos individuales para estas zonas utilizando el código de modelado WAVES (Water Atmosphere Vegetation Energy and Solutes), basado en la biofísica, que es capaz de simular el flujo no saturado. El método de Monte Carlo, junto con la técnica de muestreo Latin-Hypercube, se empleó para realizar el análisis de incertidumbre mediante la comparación de la evapotranspiración (ET) mensual modelada con MODIS ET. Los resultados muestran que el enfoque común de una estimación por sitio puede identificar el patrón espacial de recarga del agua subterránea en el área de estudio debido a la presencia de un patrón de precipitación. En comparación, el análisis de incertidumbre no solo identifica el patrón espacial, sino que proporciona niveles de confianza para la recarga del agua subterránea que son críticos para la gestión de los recursos hídricos. Los resultados también muestran que la incertidumbre absoluta de la recarga es directamente proporcional a la cantidad de ingreso de agua, pero no la incertidumbre relativa en la recarga. Este estudio indica que la estimación de la recarga espacial sin calibración del modelo o el conocimiento de la incertidumbre del modelo podría ser altamente incierto. MODIS ET se puede usar para reducir la incertidumbre de la recarga, pero es poco probable que reduzca la incertidumbre de la recarga en gran medida debido al error de estimación MODIS ET.

根据非饱和水流模拟估算的空间尺度地下水补给不确定性评价

摘要

估算空间尺度地下水补给的非饱和水流模型的参数化通常依赖于专门知识或者最好的估算参数,而不是依赖于强大的不确定性分析。本研究选择澳大利亚东南部Campaspe流域作为一个野外实例,通过进行不确定性分析检查了空间地下水补给的不确定性。根据不同的植被类型、土壤组和降水情况,首先把研究区分为13个区。然后采用基于生物物理学上的模拟编码WAVES(水大气植被能量和溶质)为这些区建立了各自的模型,该模型能够模拟非饱和水流。通过比较模拟的每月蒸发蒸腾和MODIS ET,采用蒙特卡洛法以及拉丁超立方抽样技术进行不确定性分析。结果显示,由于存在着降水模式,普通的一地一估算方法仍然能确定研究区地下水补给的空间模式。相比之下,不确定性分析不仅能够确定空间模式,而且还能提供地下水补给中的置信级别,这对于水资源管理至关重要。结果还显示,补给绝对不确定性与水输入量成正比,但是补给的相对不确定性并不是如此。本研究表明,没有模型校正或模型不确定性知识的空间补给估算可能高度不确定。MODIS ET可用于减少补给不确定性,但是由于MODIS ET估算误差,很可能在很大程度上降低补给不确定性。

Avaliação de incerteza da recarga de águas subterrâneas em escala espacial estimadas por modelagem de fluxo em zona não saturada

Resumo

Parametrização de modelos de fluxo de zona não saturada para estimativa da recarga de águas subterrâneas em escala espacial é normalmente dependente em conhecimento especializado ou parâmetros otimamente estimados ao invés de análise de incerteza. Esse estudo escolheu a bacia Campaspe na porção sudoeste da Austrália como exemplo de campo e examinou a incerteza da recarga de águas subterrâneas espacial através da análise de incerteza. A área de estudo foi primeiro dividida em 13 zonas de acordo com os tipos diferentes de vegetação, grupos de solos e precipitação. Modelos individuais foram então estabelecidos para essas zonas utilizando o código de modelagem baseado em biofísica WAVES (Águas Atmosfera Vegetação Energia e Solutos), queé capaz de simular o fluxo em zona não saturada. O método de Monte Carlo, em conjunto com a técnica de amostragem Latin-Hypercube foram empregados para fazer a análise de incerteza, comparando evapotranspiração (ET) mensalmente modelada e ET do MODIS. Os resultados demonstram que a abordagem comum de uma estimativa por local ainda pode identificar que o padrão espacial da recarga de águas subterrâneas na área estudada pela presença de um padrão de precipitação. Em comparação, a análise de incerteza não apenas identifica o padrão espacial, mas provém níveis de confiança na recarga de águas subterrâneas que são criticos para o gerenciamento dos recursos hídricos. Os resultados também demonstram que a incerteza absoluta da recarga está diretamente proporcional à quantidade de entrada de água, mas a incerteza relativa não o é. Esse estudo indica que estimar recarga espacial sem a calibragem do modelo ou conhecimento da incerteza do modelo poderia ser altamente incerto. ET do MODIS pode ser utilizada para reduzir a incerteza da recarga, mas é improvável que reduza a incerteza da recarga por uma grande extensão por causa do erro de estimativa da ET do MODIS.

Notes

Acknowledgements

This study benefitted from discussions with Dr. John Hutson and Associate Professor Murk Bottema from Flinders University, and Professor Derek Eamus from the University of Technology Sydney.

Funding information

The authors are grateful to the Murray-Darling Basin Authority for the financial support for this project.

References

  1. Anuraga TS, Ruiz L, Kumar MSM, Sekhar M, Leijnse A (2006) Estimating groundwater recharge using land use and soil data: a case study in South India. Agric Water Manag 84:65–76CrossRefGoogle Scholar
  2. Alcalá FJ, Custodio E (2014) Spatial average aquifer recharge through atmospheric chloride mass balance and its uncertainty in continental Spain. Hydrol Process 28:218–236.  https://doi.org/10.1002/hyp.9556 CrossRefGoogle Scholar
  3. Alcalá FJ, Custodio E (2015) Natural uncertainty of spatial average aquifer recharge through atmospheric chloride mass balance in continental Spain. J Hydrol 524:642–661CrossRefGoogle Scholar
  4. Australian Government (2010) Maps of average conditions. Bureau of Meteorology. http://www.bom.gov.au/climate/averages/maps.shtml. Accessed 3 July 2018
  5. Australian Government (2016) Catchment scale land use of Australia. Department of Agriculture and Water. http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20160616_11a.xml. Accessed 3 July 2018
  6. Batelaan O, De Smedt F (2001) WetSpass: a flexible, GIS based, distributed recharge methodology for regional groundwater modelling. IAHS, Wallingford, UK, pp 11–18Google Scholar
  7. Blasone RS, Madsen H, Rosbjerg D (2008) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrol 353(1–2):18–32CrossRefGoogle Scholar
  8. Broadbridge P, White I (1998) Constant rate rainfall infiltration: a versatile nonlinear model—I. analytical solution. Water Resour Res 24:145–154CrossRefGoogle Scholar
  9. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769CrossRefGoogle Scholar
  10. Chand R, Chandra S, Rao VA, Singh VS, Jain SC (2004) Estimation of natural recharge and its dependency on sub-surface geoelectric parameters. J Hydrol 299:67–83.  https://doi.org/10.1016/j.jhydrol.2004.04.001 CrossRefGoogle Scholar
  11. Cheng L, Zhang L, Wang Y, Yu Q, Eamus D, O’Grady A (2014) Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia. J Hydrol 519(Part B):1350–1361CrossRefGoogle Scholar
  12. Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010a) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18:1639–1656.  https://doi.org/10.1007/s10040-010-0625-x CrossRefGoogle Scholar
  13. Crosbie RS, Jolly ID, Leaney FW, Petheram C (2010b) Can the dataset of field based recharge estimates in Australia be used to predict recharge in data-poor areas? Hydrol Earth Syst Sci 14(10):2023–2038.  https://doi.org/10.5194/hess-14-2023-2010 CrossRefGoogle Scholar
  14. Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Change 117:41–53.  https://doi.org/10.1007/s10584-012-0558-6 CrossRefGoogle Scholar
  15. Crosbie RS, Peeters LJM, Herron N, McVicar TR, Herr A (2017) Estimating groundwater recharge and its associated uncertainty: Use of regression kriging and the chloride mass balance method. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2017.08.003
  16. CSIRO (2008) Water availability in the Campaspe: a report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Canberra, Australia, 120 ppGoogle Scholar
  17. Cook PG, Jolly ID, Walker GR, Robinson NI (2003) From drainage to recharge to discharge: some timelags in subsurface hydrology. Dev Water Sci 50(C):319–326CrossRefGoogle Scholar
  18. de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17CrossRefGoogle Scholar
  19. Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885.  https://doi.org/10.5194/hess-12-863-2008 CrossRefGoogle Scholar
  20. Dripps WR, Bradbury KR (2010) The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin. Hydrol Process 24:383–392Google Scholar
  21. Glenn EP, Doody TM, Guerschman JP, Huete AR, King EA, McVicar TR, Van Dijk AIJM, Van Niel TG, Yebra M, Zhang Y (2011) Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience. Hydrol Process 25(26):4103–4116CrossRefGoogle Scholar
  22. Grayson R, Argent R, Nathan R, McMahon T, Mein R (1998) Hydrological recipes: estimation techniques in Australian Hydrology. CRC Catchment Hydrology, Monash University, Melbourne, AustraliaGoogle Scholar
  23. Kalma J, McVicar T, McCabe M (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29(4–5):421–469CrossRefGoogle Scholar
  24. Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41.  https://doi.org/10.1029/2004WR003841
  25. Kennett-Smith A, Cook PG, Walker GR (1994) Factors affecting groundwater recharge following clearing in the south western Murray Basin. J Hydrol 154(1):85–105CrossRefGoogle Scholar
  26. Kim JH, Jackson RB (2012) A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J 11(1).  https://doi.org/10.2136/vzj2011.0021RA.
  27. Hartmann A, Gleeson T, Rosolem R, Pianosi F, Wada Y, Wagener T (2015) A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geosci Model Dev 8:1729–1746CrossRefGoogle Scholar
  28. Hu G, Jia L, Menenti M (2015) Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens Environ 156:510–526CrossRefGoogle Scholar
  29. Isbell R (1996) The Australian soil classification. CSIRO, Canberra, AustraliaGoogle Scholar
  30. Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16(4):309–330CrossRefGoogle Scholar
  31. Jyrkama MI, Sykes JF, Normani SD (2002) Recharge estimation for transient ground water modeling. Ground Water 40:638–648CrossRefGoogle Scholar
  32. Mathias SA, Sorensen JPR, Butler AP (2017) Soil moisture data as a constraint for groundwater recharge estimation. J Hydrol 552:258–266CrossRefGoogle Scholar
  33. McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol J 18:1625–1638.Google Scholar
  34. MODIS Global Evapotranspiration Project (2018) http://www.ntsg.umt.edu/project/modis/mod16.php. Accessed 3 July 2018
  35. Nolan BT, Baehr AL, Kauffman LJ (2003) Spatial variability of groundwater recharge and its effect on shallow groundwater quality in southern New Jersey. Vadose Zone J 2:677CrossRefGoogle Scholar
  36. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370CrossRefGoogle Scholar
  37. Shamsudduha M, Taylor RG, Ahmed KM, Zahid A (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19:901–916CrossRefGoogle Scholar
  38. Tan XC, Wu JW, Cai SY, Yang JZ (2014) Characteristics of groundwater recharge on the North China Plain. Groundwater 52:798–807CrossRefGoogle Scholar
  39. Terrestrial Ecosystem Research Network (2018) Soil and landscape grid of Australia. http://www.clw.csiro.au/aclep/soilandlandscapegrid/index.html. Accessed 3 July 2018
  40. Velpuri NM, Senay GB, Singh RK, Bohms S, Verdin JP (2013) A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: using point and gridded FLUXNET and water balance ET. Remote Sens Environ 139:35–49CrossRefGoogle Scholar
  41. Ward AS, Payn RA, Gooseff MN, McGlynn BL, Bencala KE, Kelleher CA, Wondzell SM, Wagener T (2013) Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses. Water Resour Res 49(6):3359–3374CrossRefGoogle Scholar
  42. Westerhoff R, White P, Rawlinson Z (2018) Incorporation of satellite data and uncertainty in a nationwide groundwater recharge model in New Zealand. Remote Sens 10(1):58.  https://doi.org/10.3390/rs10010058 CrossRefGoogle Scholar
  43. Westenbroek SM, Kelson VA, Dripps WR, Hunt RJ, Bradbury KR (2010) SWB: a modified Thornthwaite-Mather soil-water-balance code for estimating groundwater recharge. US Geol Surv Techniques Methods 6-A31, 60 ppGoogle Scholar
  44. Williams NH, Misstear B, Daly D, Johnston P, Lee M, Cooney P, Hickey C (2011) A national groundwater recharge map for Ireland. Natl Hydrol Conf 2011Google Scholar
  45. Wohling DL, Leaney FW, Crosbie RS (2012) Deep drainage estimates using multiple linear regression with percent clay content and rainfall. Hydrol Earth Syst Sci 16(2):563–572CrossRefGoogle Scholar
  46. Xie Y, Batlle-Aguilar J (2017) Limits of heat as a tracer to quantify transient lateral river–aquifer exchanges. Water Resour Res 53.  https://doi.org/10.1002/2017WR021120
  47. Xie Y, Cook PG, Shanafield M, Simmons CT, Zheng C (2016) Uncertainty of natural tracer methods for quantifying river–aquifer interaction in a large river. J Hydrol 535:135–147CrossRefGoogle Scholar
  48. Xie Y, Cook PG, Simmons CT, Partington D, Crosbie R, Batelaan O (2018) Uncertainty of groundwater recharge estimated from a water and energy balance model. J Hydrol 561:1081–1093CrossRefGoogle Scholar
  49. Zhang L, Hume IH, O’Connell MG, Mitchell DC, Milthorpe PL, Yee M, Dawes WR, Hatton TJ (1999) Estimating episodic recharge under different crop/pasture rotations in the Mallee region: part 1. experiments and model calibration. Agric Water Manag 42(2):219–235CrossRefGoogle Scholar
  50. Zhang L, Dawes WR (1998) WAVES: an integrated energy and water balance model. Technical report no. 31/98. CSIRO Land and Water, Canberra, AustraliaGoogle Scholar
  51. Zhang YK, Schilling KE (2006) Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis. J Hydrol 319:328–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yueqing Xie
    • 1
    • 2
    Email author
  • Russell Crosbie
    • 3
  • Craig T. Simmons
    • 2
  • Peter G. Cook
    • 2
  • Lu Zhang
    • 4
  1. 1.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  2. 2.National Centre for Groundwater Research and Training, College of Science and EngineeringFlinders UniversityAdelaideAustralia
  3. 3.CSIRO Land and WaterAdelaideAustralia
  4. 4.CSIRO Land and WaterCanberraAustralia

Personalised recommendations