Advertisement

Hydrogeology Journal

, Volume 26, Issue 8, pp 2649–2668 | Cite as

Inferring groundwater flow and recharge from time series analysis of storm responses in a karst aquifer of southeastern Kentucky (USA)

  • G. V. Tagne
  • C. Dowling
Report
  • 114 Downloads

Abstract

Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.

Keywords

Karst Groundwater flow Contamination Time series analysis USA 

Déduction de l'écoulement des eaux souterraines et de la recharge à partir de l’analyse des séries chronologiques des réponses aux orages dans un aquifère karstique du sud-est du Kentucky (USA)

Résumé

Les systèmes karstiques épigènes présentent une forte connectivité avec les zones de recharge en surface. Dans les cas où l’occupation du sol est dominée par une activité agricole généralisée, les aquifères karstiques épigènes sont très vulnérables aux contaminants d’origine diffuse ou localisée. Dans la situation actuelle, les paysages karstiques du sud-est Kentucky (USA) sont impactés par l’agriculture et le développement rapide de fermes d’élevage. L’analyse des réponses de l’aquifère karstique à des orages fournit des informations qualitatives sur le cheminement des eaux de recharge et le temps de résidence des eaux souterraines ; la connaissance des variations spatiales et temporelles de la recharge et des écoulements est essentielle à la compréhension du devenir des contaminants issus de la surface. Les analyses corrélatoires de longues séries chronologiques de données physico-chimiques enregistrées à l’exutoire de la cavité Grayson Gunnar, un système karstique épigène situé le long de l’escarpement de Cumberland au sud-est du Kentucky, démontre l’existence de deux drains séparés avec des réponses hydrauliques décalées de 4 à 8 heures. Les temps de réponse aux événements pluvieux de type orage vont de 4 heures pour la phase piston et dilution à 7 heures pour le retour à la normale. Environ 6 millions de litres d’eaux souterraines stockées s’écoulent à partir des deux drains pendant les crues majeures, et l’affluent montrant le temps de réponse le plus rapide représente la majorité (80%) du volume d’eau issu de la réserve s’écoulant à la source. Comme indiqué par le temps de résidence de l’eau souterraine (7 jours), la recharge se caractérise vraisemblablement par une infiltration localisée des eaux de pluie par les dolines connectées aux drains sans contribution d’eau souterraine lié à l’écoulement régional ou à des apports latéraux.

Inferencia del flujo de agua subterránea y la recarga a partir del análisis de series de tiempo de las respuestas de tormentas en un acuífero kárstico del sudeste de Kentucky (EE. UU.)

Resumen

Los sistemas kársticos epigénicos exhiben una fuerte conectividad con la recarga desde la superficie. En el uso del suelo dominado por la agricultura extensiva y las granjas, los acuíferos cársticos epigénicos son altamente vulnerables a los contaminantes superficiales de fuentes puntuales y no puntuales. Actualmente, los paisajes kársticos de la plataforma sureste de Kentucky (EE. UU.) se ven afectados por la agricultura y la rápida proliferación de las operaciones de alimentación para los animales concentrados. El análisis de las respuestas del acuífero kárstico a los eventos de tormentas proporciona información cualitativa sobre las vías de flujo de la recarga del acuífero y el tiempo de residencia del agua subterránea, y el conocimiento de las variaciones espaciales y temporales en la recarga y el flujo es crucial para comprender el destino de los contaminantes superficiales. Los análisis de correlación de series temporales de datos fisicoquímicos registrados a largo plazo en la salida de Grayson Gunnar Cave, un sistema kárstico epigénico ubicado a lo largo de la escarpa de Cumberland en el sudeste de Kentucky, revelaron la existencia de dos ramificaciones de conductos separadas que respondían con 4 a 8 horas de diferencia. Los tiempos de respuesta registrados de la tormenta van desde 4 horas para la recarga y la dilución hasta 7 horas para la recuperación. Se estima que se descargan 6 millones de litros de agua subterránea almacenada en ambas ramificaciones durante tormentas importantes, y la ramificación de respuesta más rápida representa la mayoría (80%) de la reserva de agua subterránea que se descarga a través de manantiales. Como lo demuestra el tiempo de residencia del agua subterránea (7 días), la recarga probablemente se caracteriza por la infiltración localizada del agua de lluvia desde los sumideros subsuperficiales a las ramificaciones del conducto sin contribución del flujo de agua subterránea regional o lateral.

通过对(美国)肯塔基州东南部一岩溶含水层暴雨响应的时间序列分析推断地下水流和补给

摘要

外成的岩溶系统展示出与地表补给有很强的关联性。在由粗放农业和耕作主导的土地利用中, 外成岩溶含水层很容易受到点源和非点源地表污染物的污染。目前,(美国)肯塔基州东南部高台的岩溶地貌受到了农业和集中动物养殖快速发展的影响。岩溶含水层对暴雨事件的响应分析提供了有关含水层补给水流通道和地下水滞留时间方面的定量信息,掌握补给和水流时空变化对于了解地表污染物的特性至关重要。对位于肯塔基州东南部沿Cumberland陡l坡的一外成岩溶系统Grayson Gunnar Cave出口处记录的长期物理化学数据的时间序列对比分析揭示,存在着两个分开的通道分支,两者相互相应的时间为4到8个小时。记录的暴雨响应时间从冲刷和稀释到恢复为4小时到7小时。主要暴雨中估计有6百万9升储存的地下水通过两个分支通道排泄,最快的响应分支通道占通过泉排泄的储存地下水的大多数(80%)。如地下水滞留时间(7天)证明的那样, 补给的特征很可能是雨水通过地表以下落水洞到达通道分支局部的入渗,并没有区域和侧向地下水流的补给。

Determinação do fluxo e recarga das águas subterrâneas a partir da análise de series históricas de tempestades em um aquífero cárstico no sudeste de Kentucky (EUA)

Resumo

Os sistemas cársticos epigêncios apresentam elevado grau de conectividade com eventos de recarga superficial. Em territórios onde há o predomínio de agricultura extensiva e criação intensiva, os aquíferos cársticos epigênicos apresentam elevada vulnerabilidade aos contaminantes superficiais originados de fontes pontuais e não pontuais. Atualmente, as paisagens cársticas da plataforma sudeste do Kentucky (EUA) são afetadas pela agricultura e pela rápida expansão na criação de animais em sistemas intensivos. A análise das respostas dos aquíferos cársticos a tempestades fornece informações qualitativas sobre os caminhos preferencias do fluxo da água e da recarga do aquífero, bem como o tempo de residência das águas subterrâneas. As variações espaciais e temporais de recarga e fluxo são cruciais para entender o destino dos contaminantes que poluem a superfície do solo. Análises de correlação de séries históricas de dados físico-químicos de longo prazo registrados na caverna de Grayson Gunnar, um sistema cárstico epigênico localizado ao longo da escarpa de Cumberland no sudeste de Kentucky, revelaram a existência de dois sistemas de condutos distintos que apresentam tempo de resposta a eventos de precipitação com diferença de 4 a 8 horas entre si. Os tempos de resposta registrados em grandes eventos de precipitação variam de 4 horas para descarga e diluição e 7 horas para recuperação. Estima-se que 6 milhões de litros de água subterrânea sejam descarregados por ambos os condutos durante grandes tempestades, sendo que o conduto que apresenta resposta mais rápida é responsável por cerca de 80% da água subterrânea que é descarregada na primavera. Como evidenciado pelo tempo de residência das águas subterrâneas (7 dias), a recarga é provavelmente caracterizada pela infiltração localizada da água da chuva em sumidouros conectados aos sistemas de condutos, e há pouca contribuição do fluxo de água subterrânea regional ou lateral.

Notes

Acknowledgements

We are thankful to Harry Goepel for providing housing in Kentucky during sampling. We acknowledge the Greater Cincinnati Grotto of the National Speleological Society that has allowed the use of surveys data from the Grayson-Gunnar Cave. We expand our gratitude to Gary and Synda Heikkinen (and the wonderful dogs) for granting us access to the Grayson-Gunnar Cave property. Special gratitude goes to Bill Walden, for the valuable information and emotional support he provided during our stay in Monticello, Kentucky. We acknowledge Dr. Michael E. Perdue for graciously allowing us the use of the instrumentation at the Organic Chemistry Lab (Ball State University) and to Shamus Driver for his tremendous help with the analyses.

Funding information

We want to thank the following organizations for granting funding for this project: the National Speleological Society through the 2015 Ralph Stone Research Grant, the Cave Research Foundation through the 2015 Phillip M. Smith Graduate Research Grant, and the Geological Society of America through the 2015 Student Research Grant.

References

  1. Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain Eng 121(6):427–435CrossRefGoogle Scholar
  2. Anthony D (1998) Seasonal effects on the geochemical evolution of the Logsdon River, mammoth cave, Kentucky. MSc Thesis, Western Kentucky University, Bowling Green, KYGoogle Scholar
  3. Anthony DM, Granger DE (2007) A new chronology for the age of Appalachian erosional surfaces determined by cosmogenic nuclides in cave sediments. Earth Surf Process Landf 32:874–887CrossRefGoogle Scholar
  4. Braca G (2008) Stage-discharge relationships in open channels: practices and problems. Univ. degli Studi di Trento, Trento, ItalyGoogle Scholar
  5. Brahana JV, Nix J, Bitting C, Bitting C, Quick R, Murdoch J, Roland V, Wets A, Robertson S, Scardale G, North V (2014) CAFOs on karst: meaningful data collection to adequately define environmental risk, with a specific application from the southern Ozarks of northern Arkansas. US Geol Surv Sci Invest Rep 2014-5035, pp 97–102Google Scholar
  6. Budd DA, Vacher HL (2004) Matrix permeability of the confined Floridan aquifer, Florida, USA. Hydrogeol J 12(5):531–549CrossRefGoogle Scholar
  7. Collins R, Jenkins A (1996) The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal. J Hydrol 185(1–4):71–86CrossRefGoogle Scholar
  8. Coulter CB, Kolka RK, Thompson JA (2004) Water quality in agricultural, urban, and mixed land use watersheds. J Am Water Resour Assoc 40(6):1593–1601CrossRefGoogle Scholar
  9. Dale VH, Lannom KO, Tharp ML, Hodges DG, Fogel J (2009) Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests. Can J For Res 39(2):467–480CrossRefGoogle Scholar
  10. Desmarais K, Rojstaczer S (2002) Inferring source waters from measurements of carbonate spring response to storms. J Hydrol 260(1):118–134CrossRefGoogle Scholar
  11. Doctor DH, Alexander EC, Petrič M, Kogovšek J, Urbanc J, Lojen S, Stichler W (2006) Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeol J 14(7):1171–1191CrossRefGoogle Scholar
  12. Dreiss SJ (1989) Regional scale transport in a karst aquifer: 1. component separation of spring flow hydrographs. Water Resour Res 25(1):117–125CrossRefGoogle Scholar
  13. Eisenlohr L, Bouzelboudjen M, Király L, Rossier Y (1997) Numerical versus statistical modelling of natural response of a karst hydrogeological system. J Hydrol 202(1):244–262CrossRefGoogle Scholar
  14. Ettensohn FR, Rice CR, Dever GR, Chesnut DR (1984) Slade and Paragon formations: new stratigraphic nomenclature for Mississippian rocks along the Cumberland Escarpment in Kentucky. US Geol Surv Bull 1605-B:37Google Scholar
  15. Felton GK, Currens JC (1994) Peak flow rate and recession-curve characteristics of a karst spring in the Inner Bluegrass, central Kentucky. J Hydrol 162(1–2):99–118CrossRefGoogle Scholar
  16. Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18(8):1881–1895CrossRefGoogle Scholar
  17. Florea LJ (2013) Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers. J Hydrol 489:201–213CrossRefGoogle Scholar
  18. Florea LJ, Vacher HL (2006) Springflow hydrographs: eogenetic vs. telogenetic karst. Ground Water 44:352–361.  https://doi.org/10.1111/j1745-6584-2005-00158-x CrossRefGoogle Scholar
  19. Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKCrossRefGoogle Scholar
  20. Groves C, Anthony DM, Meiman J (2003) Preliminary investigations of seasonal changes in the geochemical evolution of the Logsdon River, Mammoth Cave. Speleogenesis and Evolution of Karst Aquifers, Kentucky. https://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=1039context=geog_fac_pub. Accessed July 2018
  21. Groves C, Bolster C, Meiman J (2005) Spatial and temporal variations in epikarst storage and flow in south central Kentucky’s Pennyroyal Plateau sinkhole plain. US Geological Surv Karst Interest Group Proceedings, Rapid City, IA, September 2005, 64 ppGoogle Scholar
  22. Hess JW, White WB (1988) Storm response of the karstic carbonate aquifer of south central Kentucky. J Hydrol 99(3–4):235–252CrossRefGoogle Scholar
  23. Hooda PS, Edwards AC, Anderson HA, Miller A (2000) A review of water quality concerns in livestock farming areas. Sci Total Environ 250(1):143–167CrossRefGoogle Scholar
  24. Jacobson RL, Langmuir D (1970) The chemical history of some spring waters in carbonate rocks. Groundwater 8(3):5–9CrossRefGoogle Scholar
  25. Kazemi, GA, Lehr, JH, Perrochet, P (2006) Groundwater age. Wiley, Chichester, UKGoogle Scholar
  26. Kentucky Mesonet (2015) Kentucky weather and climate. Western Kentucky University. http://www.kymesonet.org. Accessed on 6/12/2015
  27. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205(3–4):217–231CrossRefGoogle Scholar
  28. Lu J, Sun G, McNulty SG, Amatya DM (2003) Modeling actual evapotranspiration from forested watersheds across the southeastern United States. J Am Water Resour Assoc 39(4):886–896CrossRefGoogle Scholar
  29. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale [Correlation and spectral analyses to better understand hydrologic systems]. J Hydrol 67(1–4):25–43CrossRefGoogle Scholar
  30. Massei N, Dupont JP, Mahler BJ, Laignel B, Fournier M, Valdes D, Ogier S (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329(1):244–257CrossRefGoogle Scholar
  31. Mull DS, Liebermann TD, Smoot JL, Woosley LH Jr., Mikulak RJ (1988) Application Of dye-tracing techniques for determining solute-transport characteristics of ground water in karst terranes. US Environmental Protection Agency EPA904/6–88-001, USEPA, Washington, DC, 103 ppGoogle Scholar
  32. NSS (2005) The exploration and survey of Grayson Gunnar Cave. National Speleological Society Annual Report 2005, NSS, Huntsville, ALGoogle Scholar
  33. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168(1–4):73–89CrossRefGoogle Scholar
  34. Palmer AN (1991) Origin and morphology of limestone caves. GSA Bull 103(1):1–21.  https://doi.org/10.1130/0016-7606 CrossRefGoogle Scholar
  35. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473CrossRefGoogle Scholar
  36. Perrin J, Jeannin PY, Zwahlen F (2003) Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura. Hydrogeol J 11(6):673–686CrossRefGoogle Scholar
  37. Priestley-Taylor (2015) Priestley-Taylor potential evapotranspiration online calculation model. San Diego State University. http://onlinecalc.sdsu.edu/onlinepriestleytaylor.php. Accessed June 2015
  38. Rantz SE (1982) Indirect determination of peak discharge. In: Measurement and computation of streamflow: measurement of stage and discharge, vol 1. US Geol Survey Water Suppl Pap 2175, 284 ppGoogle Scholar
  39. Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Groundwater 34(1):23–30CrossRefGoogle Scholar
  40. Scanlon BR (1989) Physical controls on hydrochemical variability in the Inner Bluegrass karst region of central Kentucky. Groundwater 27(5):639–646CrossRefGoogle Scholar
  41. Segnit ER, Holland HD, Biscardi CJ (1962) The solubility of calcite in aqueous solutions: I. the solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm. Geochim Cosmochim Acta 26(12):1301–1331CrossRefGoogle Scholar
  42. Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of lime-stone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14(2):93–128CrossRefGoogle Scholar
  43. Simpson LC, Florea LJ (2009) The Cumberland Plateau of eastern Kentucky. In: Caves and karst of America. National Speleological Society, Huntsville, AL, pp 70–79Google Scholar
  44. US Climate (2015) United States climate data. www.usclimatedata.com. Accessed June 2015
  45. USGS (2015) United Geological Survey Water Watch. http://waterwatch.usgs.gov/. Accessed June 2015
  46. Vacher HL, Mylroie JE (2002) Eogenetic karst from the perspective of an equivalent porous medium. Carbon Evapor 17(2):182–196CrossRefGoogle Scholar
  47. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  48. Wigley TML (1973) The incongruent solution of dolomite. Geochim Cosmochim Acta 37(5):1397–1402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological SciencesBall State UniversityMuncieUSA

Personalised recommendations