Environmental flows in hydro-economic models

Paper
  • 39 Downloads

Abstract

The protection of environmental flows, as a management objective for a regulating agency, needs to be consistent with the aquifer water balance and the degree of resource renewability. A stylized hydro-economic model is used where natural recharge, which sustains environmental flows, is considered both in the aquifer water budget and in the welfare function as ecosystem damage. Groundwater recharge and the associated natural drainage may be neglected for aquifers containing fossil water, where the groundwater is mined. However, when dealing with an aquifer that constitutes a renewable resource, for which recharge is not negligible, natural drainage should explicitly appear in the water budget. In doing so, the optimum path of net extraction rate does not necessarily converge to the recharge rate, but depends on the costs associated with ecosystem damages. The optimal paths and equilibrium values for the water volume and water extraction are analytically derived, and numerical simulations based on the Western La Mancha aquifer (southwest Spain) illustrate the theoretical results of the study.

Keywords

Hydro-economic model Environmental flows Ecosystem damages Groundwater recharge/water budget Groundwater management 

Modélisation des flux environnementaux en hydro-économie

Résumé

L’objectif de préservation des flux environnemetaux par une agence de régulation doit être compatible avec le bilan hydrique de l’aquifère et son degré de renouvelabilité. Un modèle hydro-économique stylisé est. développé dans lequel le drainage naturel qui assure le maintien de ces flux environnementaux, apparaît à la fois dans le bilan hydrique de l’aquifère et comme dommage pour les écosystèmes dans la fonction objective de l’agence de régulation. La recharge de l’aquifère et le drainage naturel peuvent être considérés comme négligeable pour des aquifères dont la resource est. épuisable. Cependant, quand l’aquifère est. une resource renouvelable avec une recharge naturelle non négligeable, le drainage naturel doit explicitement apparaître dans le bilan hydrique de l’aquifère. Il en résulte que la trajectoire optimale du taux net de prélèvement ne converge pas nécessairement vers le taux de recharge naturel et va dépendre des coûts associés aux dommages environnementaux. Les expressions analytiques des trajectoires optimales et des valeurs d’équilibre de long terme du volume d’eau et du montant d’extraction sont calculées. Des simulations numériques réalisées sur l’Aquifère Ouest La Mancha (Sud-ouest de l’Espagne) illustrent les résultats théoriques de cette étude.

Flujos ambientales en modelos hidroeconómicos

Resumen

La protección de los caudales ambientales, como un objetivo de gestión para una agencia reguladora, debe ser coherente con el equilibrio hídrico del acuífero y el grado de renovabilidad de los recursos. Se utiliza un modelo hidroeconómico estilizado donde la descarga natural, que sustenta los flujos ambientales, se considera tanto en el balance de agua del acuífero como en la función de beneficios como de perjuicios para al ecosistema. La recarga de agua subterránea y el drenaje natural asociado pueden descuidarse para los acuíferos que contienen agua fósil, donde se extrae el agua subterránea. Sin embargo, cuando se trata de un acuífero que constituye un recurso renovable, para el cual la recarga no es insignificante, el drenaje natural debe aparecer explícitamente en el balance de agua. Al hacerlo, la ruta óptima de la tasa de extracción neta no necesariamente converge a la tasa de recarga, sino que depende de los costos asociados con los daños del ecosistema. Los caminos óptimos y los valores de equilibrio para el volumen de agua y la extracción de agua se derivan analíticamente, y las simulaciones numéricas basadas en el acuífero occidental de La Mancha (suroeste de España) ilustran los resultados teóricos del estudio.

水经济模型中的环境水流

摘要

作为管理机构的一项管理目标,环境水流的保护需要与含水层水平衡及资源可再生性程度保持一致。在维持环境水流的天然排泄被认为在含水层水平衡和福利功能中作为生态损害因素的地方采用了程式化的水经济模型。地下水补给以及相关的天然排水对于含有原生水的含水层来说可以忽略。然而,在处理构成可再生资源的、补给不可忽略的含水层时,天然排水应当明确地出现在水平衡中。为此,纯抽水量的最佳途径没有必要汇聚至补给量上,但取决于与生态损害的成本。水量及抽水量最忌途径和平衡值通过解析获得,基于(西班牙西南部)La Mancha西部含水层的数值模拟描述了研究的理论结果。

Fluxos ambientais em modelos hidroeconômicos

Resumo

A proteção de fluxos ambientais, como um objetivo de gestão para uma agencia reguladora, precisa ser consistente com o balanço hídrico do aquífero e o grau de renovação do recurso. Um modelo hidroeconômico estilizado é usado onde a descarga natural, que sustenta os fluxos ambientais, é considerada tanto no balanço hídrico do aquífero e na função de bem-estar como em danos ao ecossistema. A recarga das águas subterrâneas e a drenagem natural associada podem ser negligenciadas para aquíferos contendo água fóssil, onde as águas subterrâneas são explotadas. No entanto, ao lidar com um aquífero que constitui um recurso renovável, para o qual a recarga não é negligenciável, a drenagem natural deve aparecer explicitamente no balanço hídrico. Ao fazê-lo, o caminho ideal da taxa de extração liquida não converge necessariamente para a taxa de recarga, mas depende dos custos associados aos danos do ecossistema. Os caminhos ideais e os valores de equilíbrio para o volume de água e a extração de água são derivados analiticamente, e as simulações numéricas baseadas no aquífero La Mancha ocidental (sudoeste da Espanha) ilustram os resultados teóricos do estudo.

Notes

Acknowledgements

The authors are thankful to Aurélien Dumont for his constructive comments on the original version of the manuscript and to the two reviewers for their comments and suggestions.

Supplementary material

10040_2018_1765_MOESM1_ESM.pdf (258 kb)
ESM 1 (PDF 257 kb)

References

  1. Akter S, Grafton R, Merritt W (2014) Integrated hydro-ecological and economic modeling of environmental flows: Macquarie Marshes, Australia. Agric Water Manag 145:98–109CrossRefGoogle Scholar
  2. Allen RC, Gisser M (1984) Competition versus optimal control in groundwater pumping when demand is nonlinear. Water Resour Res 20(7):752–755CrossRefGoogle Scholar
  3. Babel MS, Das Gupta E, Nayak DK (2005) A model for optimal allocation of water to competing demands. Water Resour Manag 19:693–712CrossRefGoogle Scholar
  4. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton, NJGoogle Scholar
  5. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Groundwater 40(4):340–345CrossRefGoogle Scholar
  6. Brill TC, Burness HS (1994) Planning versus competitive rates of groundwater pumping. Water Resour Res 30(6):1873–1888CrossRefGoogle Scholar
  7. Burt O (1964) Optimal resource use over time with an application to groundwater. Manag Sci 11:80–93CrossRefGoogle Scholar
  8. Burt O (1967) Groundwater management under quadratic criterion function. Water Resour Res 3(3):673–682CrossRefGoogle Scholar
  9. Cousquer Y, Pryet A, Flipo N, Delbart C, Dupuy A (2017) Estimating river conductance from prior information to improve surface-subsurface model calibration. Groundwater 55(3):408–418.  https://doi.org/10.1111/gwat.12492 CrossRefGoogle Scholar
  10. de Frutos Cachorro J, Erdlenbruch K, Tidball M (2014) Optimal adaptation strategies to face shocks on groundwater resources. J Econ Dyn Control 40:134–153CrossRefGoogle Scholar
  11. Devlin JF, Sophocleous M (2004) The persistence of the water budget myth and its relationship to sustainability. Hydrogeol J 13(4):549–554.  https://doi.org/10.1007/s10040-004-0354-0 CrossRefGoogle Scholar
  12. Dumont A (2015) Flows, footprints and values: visions and decisions on groundwater in Spain. PhD Thesis, Universidad Complutense de Madrid, Madrid, SpainGoogle Scholar
  13. Eamus D, Froend R, Loomes R, Hose G, Murray B (2006) A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust J Bot 54(2):97–114CrossRefGoogle Scholar
  14. Ebel BA, Mirus BB, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water–groundwater interactions: parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23(13):1949–1959.  https://doi.org/10.1002/hyp.7279 CrossRefGoogle Scholar
  15. Esteban E, Albiac J (2011) Groundwater and ecosystems damages: questioning the Gisser-Sanchez effect. Ecol Econ 70:2062–2069CrossRefGoogle Scholar
  16. Esteban E, Albiac J (2012) The problem of sustainable groundwater management: the case of La Mancha aquifers (Spain). Hydrogeol J 20:98–129CrossRefGoogle Scholar
  17. Esteban E, Dinar A (2013) Cooperative management of groundwater resources in the presence of environmental externalities. Environ Resour Econ 54(3):443–469.  https://doi.org/10.1007/s10640-012-9602-2 CrossRefGoogle Scholar
  18. Esteban E, Dinar A (2016) The role of groundwater-dependent ecosystems in groundwater management. Nat Resour Model 29(1):98–129Google Scholar
  19. Gisser M (1983) Groundwater: focusing on the real issue. J Polit Econ 91(6):1001–1027CrossRefGoogle Scholar
  20. Gisser M, Mercado A (1972) Integration of the agricultural demand function for water and the hydrologic model of the Pecos Basin. Water Resour Res 8(6):1373–1384CrossRefGoogle Scholar
  21. Gisser M, Sanchez D (1980a) Some additional economic aspects of ground water resources and replacement flows in semi-arid agricultural area. Int J Control 31(2):331–341CrossRefGoogle Scholar
  22. Gisser M, Sanchez D (1980b) Competition versus optimal control in groundwater pumping. Water Resour Res 16(4):638–642CrossRefGoogle Scholar
  23. Gorelick SM (1983) A review of distributed parameter groundwater management modeling methods. Water Resour Res 19(2):305–319CrossRefGoogle Scholar
  24. Hansen J (2012) The economics of optimal urban groundwater management in southwestern USA. Hydrogeol J 20:865–877CrossRefGoogle Scholar
  25. Harou J, Pulido-Velazquez M, Rosenberg D, Medellín-Azuara J, Lund J, Howitt R (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375(3):627–643CrossRefGoogle Scholar
  26. Katic P, Grafton Q (2012) Economic and spatial modelling of groundwater extraction. Hydrogeol J 20:831–834CrossRefGoogle Scholar
  27. Knapp K, Olson L (1995) The economics of conjunctive groundwater management with stochastic surface supplies. J Environ Econ Manag 28(3):340–356CrossRefGoogle Scholar
  28. Konikow L, Leake S (2014) Depletion and capture: revisiting the source of water derived from wells. Groundwater 52(S1):100–111.  https://doi.org/10.1111/gwat.12204 CrossRefGoogle Scholar
  29. Koundouri P (2004) Potential for groundwater management: Gisser-Sanchez effect reconsidered. Water Resour Res 40(6-W06S16)Google Scholar
  30. Krishnamurthy CB (2017) Optimal management of groundwater under uncertainty: a unified approach. Environ Resour Econ 67(2):351–377.  https://doi.org/10.1007/s10640-015-9989-7 CrossRefGoogle Scholar
  31. Lohman SW (1972) Definitions of selected ground-water terms, revisions and conceptual refinements. US Gov. Printing Office, Washington, DCGoogle Scholar
  32. Martínez-Santos P, De Stefano L, Llamas MR, Martínez-Alfaro PE (2008) Wetland restoration in the Mancha Occidental aquifer, Spain: a critical perspective on water, agricultural, and environmental policies. Restor Ecol 16(3):511–521CrossRefGoogle Scholar
  33. Momblanch A, Connor J, Crossman N, Paredes-Arquiola J, Andreu J (2016) Using ecosystem services to represent the environment in hydro-economic models. J Hydrol 538:293–303CrossRefGoogle Scholar
  34. Morel-Seytoux HJ (2009) The turning factor in the estimation of stream–aquifer seepage. Groundwater 47(2):205–212.  https://doi.org/10.1111/j.1745-6584.2008.00512.x CrossRefGoogle Scholar
  35. Murray BBR, Zeppel MJ, Hose GC, Eamus D (2003) Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecol Manag Restor 4(2):110–113CrossRefGoogle Scholar
  36. Pereau JC, Mouysset L, Doyen L (2017) Groundwater management in a food security context. Environ Resour Econ.  https://doi.org/10.1007/s10640-017-0154-3
  37. Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manag 24(2):139–158CrossRefGoogle Scholar
  38. Pulido-Velázquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Plan Manag 132(6):454–467CrossRefGoogle Scholar
  39. Qureshi E, Reeson A, Reinelt P, Brozovic N, Whitten S (2012) Factors determining the economic value of groundwater. Hydrogeol J 20:821–829CrossRefGoogle Scholar
  40. Skurray D, Pannell J (2012) Potential approaches to the management of third-party impacts from groundwater transfers. Hydrogeol J 20:879–891CrossRefGoogle Scholar
  41. Sophocleous M (2007) The science and practice of environmental flows and the role of hydrogeologists. Groundwater 45(4):393–401CrossRefGoogle Scholar
  42. Sorger G (2015) Dynamic economic analysis: deterministic models in discrete time. Cambridge University Press, Cambridge, UKGoogle Scholar
  43. Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 19(5–6):397–441CrossRefGoogle Scholar
  44. Tomini A (2014) Is the Gisser and Sanchez model too simple to discuss the economic relevance of groundwater management? Water Resour Econ 6:18–29CrossRefGoogle Scholar
  45. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370(1):207–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GREThA UMR CNRS 5113University of BordeauxPessacFrance
  2. 2.Géoressources & EnvironnementBordeaux INP et Univ. Bordeaux Montaigne, ENSEGIDPessacFrance

Personalised recommendations