Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data

Paper
  • 57 Downloads

Abstract

The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985–2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.

Keywords

Groundwater age Quaternary aquifers Hydrochemistry Aquifer depletion China 

Evaluation de la disponibilité de l’eau souterraine et de la réponse du système hydrogéologique à Une exploitation intensive dans la Plaine du Nord de la Chine à partir de l’analyze de données de traçage isotopique de longue portée

Résumé

L’utilization des traceurs isotopiques comme un outil d’évaluation des réponses des aquifères à une exploitation intensive a été démontrée et employée pour obtenir une meilleure compréhension de la durabilité des aquifères exploités de manière intense dans la plaine du Nord de la Chine. Onze sites avec des forages ont été sélectionnés pour leurs données d’analyze en traceurs isotopiques de longue portée (1985–2014). Les isotopes stables δ18O et δ2H et l’hydrochimie ont été utilisés pour comprendre les réponses hydrodynamiques du système aquifère, comprenant des aquifères libres et captifs, à l’exploitation des eaux souterraines. Les séries temporelles des données de l’activité 14C ont aussi été utilisées pour estimer l’âge des eaux souterraines, contribuant ainsi à la compréhension de la durabilité des eaux souterraines et de l’épuisement des aquifères. Un enrichissement en isotope de l’oxygène lourd (18O) et des concentrations élevées en chlorure, sulfate, et nitrate ont été trouvés dans les eaux souterraines extraites de l’aquifère libre, ce qui suggère que l’exploitation intensive pourrait induire une contamination potentielle des aquifères. Les séries chronologiques de l’activité du 14C ont montré une augmentation de l’âge des eaux souterraines avec l’exploitation des parties captives du système aquifère, ce qui indique qu’une plus grande fraction d’eau ancienne a été exploitée au cours du temps, et que les eaux souterraines de l’aquifère profond ont été extraites. La demande en eau actuelle dépasse les capacités de production durable du système aquifère de la plaine du Nord de la Chine. Certaines mesures doivent être prises pour assurer des réductions importantes des prélèvements d’eaux souterraines des aquifères après une longue période de rabattement.

Evaluación de la disponibilidad de agua subterránea y de la respuesta del sistema subterráneo a la explotación intensiva en la llanura del Norte de China mediante el análisis de datos de trazadores isotópicos de largo plazo

Resumen

Se demuestra el uso de trazadores isotópicos como herramienta de evaluación de las respuestas de los acuíferos a la explotación intensiva para lograr una mejor comprensión de la sostenibilidad de los acuíferos intensamente explotados en la llanura del norte de China. Se seleccionaron once sitios de pozos que tienen datos de análisis de trazadores isotópicos a largo plazo (años 1985–2014). Los isótopos estables δ18O and δ2H y la hidroquímica se utilizaron para comprender las respuestas hidrodinámicas del sistema acuífero, incluidos los acuíferos confinados y no confinados, a la extracción de agua subterránea. Los datos de series cronológicas de la actividad de 14C también se utilizaron para evaluar la edad del agua subterránea, contribuyendo así a la comprensión de la sostenibilidad del agua subterránea y el agotamiento del acuífero. El enriquecimiento del isótopo pesado de oxígeno (18O) y las concentraciones elevadas de cloruro, sulfato y nitrato que se encontraron en el agua subterránea extraída del acuífero no confinado, sugieren que la explotación intensiva podría inducir el potencial de contaminación del acuífero. Los datos de series de tiempo de la actividad 14C mostraron un aumento de la edad del agua subterránea con la explotación de las partes confinadas del sistema acuífero, lo que indica que se ha explotado una alta fracción del agua vieja con el tiempo y que se han extraído las aguas subterráneas del acuífero profundo. La demanda actual de agua excede las capacidades de producción sostenible del sistema acuífero en la llanura del norte de China. Deben tomarse algunas medidas para garantizar importantes recortes en las extracciones de aguas subterráneas de los acuíferos después de un largo período de agotamiento.

通过长期的同位素示踪数据分析评价中国华北平原地下水可利用性以及地下水系统对强烈开采的响应

摘要

展示了应用同位素示踪技术评价含水层对地下水强烈开采的响应,从而更好地了解中国华北平原强烈开采含水层的可持续性。本次选择了11个具有长期(1985–2014年)同位素示踪分析数据的井位进行研究。利用稳定同位素δ18O 和 δ2H以及水化学特征了解承压及非承压含水层系统对地下水开采的水动力响应。此外利用了14C活性的时序数据评价地下水年龄,有助于了解地下水的可持续性和含水层的消耗情况。在非承压含水层抽取的地下水中发现重氧同位素(18O)富集及氯化物、硫酸盐以及硝酸盐含量增加,表明强烈开采可能会引起含水层的污染。14C活性时序数据显示,随着对承压含水层地下水的开采,地下水的年龄在增加,表明随着时间推进, 部分深部含水层的老水已经被开采。目前的华北平原对地下水的需求已经超过了含水层系统的可持续供水能力, 必须采取一些措施减少地下水的开采, 减少地下水的长期消耗。

Avaliando a disponibilidade de águas subterrâneas e a resposta do sistema aquífero à explotação intensiva na Planície do Norte da China utilizando análise de dados traçadores de longo prazo

Resumo

O uso de traçadores istópicos como ferramenta para avaliar as respostas do aquífero à exploração intensiva é demonstrado e usado para obter uma melhor compreensão da sustentabilidade dos aquíferos explorados intensivamente na Planície do Norte da China. Foram selecionados 11 locais com poços que têm dados de análise de longo prazo (anos 1985–2014) de traçadores isotópicos. Os isótopos estáveis ​​ δ18O e δ2H e hidroquímica foram utilizados para entender as respostas hidrodinâmicas do sistema aquífero, incluindo aquíferos não confinados e confinados, à captação de águas subterrâneas. Os dados da série temporal da atividade do 14C também foram utilizados para avaliar a idade das águas subterrâneas, contribuindo assim para a compreensão da sustentabilidade das águas subterrâneas e do esgotamento dos aquíferos. Enriquecimento do isótopo de oxigênio pesado (18O) e concentrações elevadas de cloreto, sulfato e nitrato foram encontrados em águas subterrâneas extraídas do aquífero não confinado, o que sugere que a exploração intensiva pode induzir o potencial de contaminação do aquífero. Os dados da série temporal da atividade 14C mostraram um aumento da idade das águas subterrâneas com explotação das partes confinadas do sistema aquífero, o que indica que uma maior fração de água antiga foi explorada ao longo do tempo e que a água subterrânea do aquífero profundo foi extraída. A demanda atual de água excede as capacidades de produção sustentável do sistema aquífero na Planície do Norte da China. Algumas medidas devem ser tomadas para garantir cortes importantes nas retiradas de águas subterrâneas dos aquíferos após um longo período de depleção.

References

  1. Cao G (2013) Evaluation of the groundwater system in the North China Plain using groundwater modelling. PhD Thesis, China University of Geosciences, BeijingGoogle Scholar
  2. Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modelling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res 49:159–175.  https://doi.org/10.1029/2012WR011899 CrossRefGoogle Scholar
  3. Chen Z, Qi J, Xu J, Ye H, Nan Y (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain. Appl Geochem 18(7):997–1009.  https://doi.org/10.1016/S0883-2927(02)00206-8 CrossRefGoogle Scholar
  4. Chen Z, Nie Z, Zhang Z, Qi J, Nan Y (2005) Isotopes and sustainability of ground water resources, North China Plain. Ground Water 43(4):485–493.  https://doi.org/10.1111/j.1745-6584.2005.0038.x CrossRefGoogle Scholar
  5. Chen J, Tang C, Yu J (2006) Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. J Hydrol 326(1–4):367–378.  https://doi.org/10.1016/j.jhydrol.2005.11.007 CrossRefGoogle Scholar
  6. Chen Z, Qi J, Zhang Z (2010) Application of an isotopic hydrogeology method in a typical basin in northern China. Science Press, BeijingGoogle Scholar
  7. Cheng R (1988) Groundwater replenishment analysis through isotope composition of water in nature. In: Liu C, Ren H (eds) Air, surface, soil and groundwater interaction (in Chinese). Science Press, Beijing, pp 275–286Google Scholar
  8. Cheng Z, Zhang Y, Su C, Chen Z (2017) Chemical and isotopic response to intensive groundwater abstraction and its implications on aquifer sustainability in Shijiazhuang, China. J Earth Sci-China 28(3):523–534.  https://doi.org/10.1007/s12583-017-0729-5 CrossRefGoogle Scholar
  9. Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12(1):81–93.  https://doi.org/10.1007/s10040-003-0300-6 CrossRefGoogle Scholar
  10. Grassi S, Doveri M, Cortecci G, Amadori M (2011) Hydrogeological study of the intensely exploited aquifer of the Santa Croce leather-producing district, Tuscany (central Italy). Hydrogeol J 19(3):671–684.  https://doi.org/10.1007/s10040-011-0710-9 CrossRefGoogle Scholar
  11. Guo Y, Liu S, Zhang Z, Shen Z, Zhong Z (1996) The formation law of deep-lying groundwater resources in areas south of Jingjin in the Hebei Plain (in Chinese). Geol Rev 42(5):410–415Google Scholar
  12. Hssaisoune M, Bouchaou L, N’Da B, Malki M, Abahous H, Fryar AE (2017) Isotopes to assess sustainability of overexploited groundwater in the Souss–Massa system (Morocco). Isot Environ Health Stud 53(3):298–312.  https://doi.org/10.1080/10256016.2016.1254208 CrossRefGoogle Scholar
  13. IAEA (2006) Isotopic assessment of long-term groundwater exploitation. IAEA-TECDOC-1507, IAEA, ViennaGoogle Scholar
  14. Kreuzer AM, Von Rohden CV, Friefrich R, Chen Z, Shi J, Hajdas I, Kipfer R, Werner A (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259(3–4):168–180.  https://doi.org/10.1016/j.chemgeo.2008.11.001 CrossRefGoogle Scholar
  15. Kung C, Tu N (1980) Vegetational and climatic changes in the past 30,000–10,000 years in Beijing. Acta Bot Sin 22:330–338Google Scholar
  16. Li W, Cui Y, Su C, Zhang W, Shao J (2012) A study on an integrated numerical groundwater and land subsidence model of Tianjin (in Chinese). J Jilin Univ (Earth Sci Ed) 42(3):805–813Google Scholar
  17. Liu J, Chen Z (2009) Using stable isotope to trace the sources of nitrate in groundwater in Shijiazhuang (in Chinese). Environ Sci 30(6):42–48Google Scholar
  18. Lu Y, Tang C, Chen J, Song X, Li F, Sakura Y (2008) Spatial characteristics of water quality, stable isotopes and tritium associated with groundwater flow in the Hutuo River alluvial fan plain of the North China Plain. Hydrogeol J 16(5):1003–1015.  https://doi.org/10.1007/s10040-008-0292-3 CrossRefGoogle Scholar
  19. Madioune DH, Faye S, Orban P, Brouyère S, Dassargues A, Mudry J, Stumpp C, Maloszewski P (2014) Application of isotopic tracers as a tool for understanding hydrodynamic behavior of the highly exploited Diass aquifer system (Senegal). J Hydrol 511(16):443–459.  https://doi.org/10.1016/j.jhydrol.2014.01.037 CrossRefGoogle Scholar
  20. Shao J, Zhao Z, Cui Y, Wang R, Li C, Yang Q (2009) Application of groundwater modelling system to the evaluation of groundwater resources in North China Plain (in Chinese). Resour Sci 31(3):361–367Google Scholar
  21. Shi D, Yin X, Sun J, Yin Z (1998) A simulation study on the evolution of groundwater circulation systems in Cenozoic basins of northern China. Acta Geol Sin 72:100–107.  https://doi.org/10.1111/j.1755-6724.1998.tb00737.x CrossRefGoogle Scholar
  22. Su A, Chen Z, Liu J, Wei W (2014a) Sustainability of intensively exploited aquifer Systems in the North China Plain: insights from multiple environmental tracers. J Earth Sci-China 25(3):605–611.  https://doi.org/10.1007/s12583-014-0441-7 CrossRefGoogle Scholar
  23. Su C, Chen Z, Chen J, Chen J, Fei Y, Chen J, Duan B (2014b) Mechanics of aquitard drainage by aquifer-system compaction and its applications for water-management in the North China Plain. J Earth Sci-China 25(3):598–604.  https://doi.org/10.1007/s12583-014-0440-8 CrossRefGoogle Scholar
  24. Wang Y, Chen Z, Fei Y, Liu J, Wei W (2011) Estimation of water released from aquitard compaction indicated by fluorine in Cangzhou (in Chinese). J Jilin Univ (Earth Sci Ed) 41(sup.1):298–302Google Scholar
  25. Xing L, Guo H, Zhan Y (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci 70-71:250–264.  https://doi.org/10.1016/j.jseaes.2013.03.017 CrossRefGoogle Scholar
  26. Zhan Y, Guo H, Wang Y, Li R, Hou C, Shao J, Cui Y (2014) Evolution of groundwater major components in the Hebei Plain: evidences from 30-year monitoring data. J Earth Sci-China 25(3):563–574.  https://doi.org/10.1007/s12583-014-0445-3 CrossRefGoogle Scholar
  27. Zhang R (1991) A mechanism on the increase of fluorine in the deep confined aquifer in eastern Hebei Plain (in Chinese). Hydrogeol Eng Geol 18:56–58Google Scholar
  28. Zhang Z, Zhang H, Sun J, Yang L, Cui Y, Wu L, Qi J, Xu J (1987) Environmental isotope study related to ground water age, flow system and saline water origin in quaternary aquifer of Hebei Plain (in Chinese). Hydrogeol Eng Geol 96(1):1–6Google Scholar
  29. Zhang Z, Shi D, Ren F, Yin Z, Sun J, Zhang C (1997) Evolution of Quaternary groundwater system in North China Plain. Sci China Ser D 40(3):276–283CrossRefGoogle Scholar
  30. Zhang Z, Fei Y, Chen Z (2009) Investigation and assessment of sustainable utilization of groundwater resources in the North China Plain (in Chinese). Geological Publishing House, BeijingGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chen Su
    • 1
  • Zhongshuang Cheng
    • 1
  • Wen Wei
    • 1
  • Zongyu Chen
    • 1
  1. 1.Institute of Hydrogeology and Environmental GeologyChinese Academy of Geological SciencesShijiazhuangChina

Personalised recommendations