Advertisement

Salinity balance and historical flushing quantified in a high-rainfall catchment (Mount Lofty Ranges, South Australia)

  • Thomas A. AndersonEmail author
  • Erick A. Bestland
  • Ilka Wallis
  • Huade D. Guan
Paper

Abstract

Human-induced landscape salinization, including the effects of dryland salinity, is negatively impacting many catchments in southern Australia. Salinization occurs due to increased recharge and water-table rise following land clearing of deep-rooted native vegetation. In low-lying areas with poor drainage, groundwater-level rise can lead to increased evapotranspiration, mobilization of vadose zone salt, and salt scalding. Alternatively, these same processes of increased recharge and groundwater rise can lead to decreased salinization as accumulated salts are flushed into surface waters. This study in a high-rainfall area of the Mount Lofty Ranges of South Australia documents catchment desalinization. A 28-year record (1989–2016) of flow and salinity in Scott Creek was analysed based on monthly data. Analysis of catchment-scale chloride deposition and export determined that approximately three times more chloride is exported than is input to the catchment from atmospheric sources. Over the time period investigated, salt load exported to surface water decreased by, on average, 6.4 t annually due to catchment freshening. Analysis of monthly salinity balance of a sub-catchment drained by an intermittent stream demonstrates that accumulation of chloride, rather than export, occurs during drought years. In the catchment, as a whole, salts are being flushed via groundwater flow into the permanent stream in all years of the record. Deep groundwater is input to the permanent stream, with mixing of deeper more saline and fresher shallow groundwater. Thus, a complex interaction of landscape hydrologic parameters such as relief, precipitation, chloride deposition and land-use history, determine whether a catchment undergoes salinization or desalinization.

Keywords

Dryland salinity Salinization Groundwater/surface-water relations Australia 

Bilan et quantification du lessivage historique de la salinité dans un bassin à forte pluviométrie (Chaine du Mont-Lofty, Australie du Sud)

Résumé

La salinisation anthropique des paysages, y compris les effets de la salinité des terres arides, a un impact négatif sur de nombreux bassins versants en Australie du Sud. La salinisation se produit en liaison avec une augmentation de la recharge et du niveau piézométrique à la suite du défrichement de la végétation endémique profondément enracinée. Dans les zones de basse altitude à faible drainage, l’augmentation du niveau piézométrique peut conduire à une augmentation de l’évapotranspiration, la mobilisation du sel de la zone non saturée, et son échaudage. Alternativement, ces mêmes processus de recharge accrue et d’augmentation du niveau de nappe peuvent entraîner une diminution de la salinisation à mesure que les sels accumulés sont évacués par les eaux de surface. Cette étude dans la zone de fortes précipitations de la Chaine du Mont-Lofty en Australie du Sud démontre cette désalinisation des bassins versants. Un enregistrement de 28 ans (1898–2016) des débits et de salinité dans le ruisseau Scott a été réalisé sur la base de données mensuelles. L’analyse des dépôts et des exportations de chlorure à l’échelle du bassin hydrographique a permis de déterminer qu’environ trois fois plus de chlorure est exporté que la quantité apportée par les sources atmosphériques. Au cours de la période étudiée, la charge en sel exportée vers les eaux de surface a diminué, en moyenne, de 6.4 tonnes par année, en raison de l’assèchement des bassins hydrographiques. L’analyse du bilan mensuel de la salinité d’un sous-bassin drainé par un cours d’eau intermittent démontre une accumulation de chlorure, plutôt qu’une exportation, pendant les années de sécheresse. Sur l’ensemble du bassin versant, les sels sont évacués par les écoulements d’eaux souterraines, dans le cours d’eau permanent, pendant toutes les années de l’enregistrement. Les eaux souterraines profondes alimentent le cours d’eau permanent, provoquant un mélange entre eaux souterraines plus profondes et plus salines et des eaux de surface plus fraîches. Ainsi, une interaction complexe des paramètres hydrologiques du paysage, comme le relief, les précipitations, les dépôts de chlorure et l’historique d’utilisation des terres, détermine si un bassin versant subit une salinisation ou une désalinisation.

Balance de salinidad y cuantificación del lavado histórico en una cuenca de alta precipitación (Mount Lofty Ranges, Australia Meridional)

Resumen

La salinización del terreno inducida por el hombre, incluidos los efectos de la salinidad de las tierras secas, está afectando negativamente a muchas cuencas en el sur de Australia. La salinización se produce debido al aumento de la recarga y al ascenso del nivel freático después del retiro de la vegetación nativa de raíces profundas. En las zonas bajas con drenaje deficiente, el ascenso del nivel del agua subterránea puede provocar un aumento de la evapotranspiración, la movilización de la sal de la zona vadosa y salinización en la superficie. Alternativamente, estos mismos procesos de aumento de recarga y ascenso del nivel freático pueden llevar a una disminución de la salinización a medida que las sales acumuladas se descargan en las aguas superficiales. Este estudio en un área de alta precipitación de Mount Lofty Ranges en South Australia documenta la desalinización de la cuenca. Se analizó un registro de datos mensuales de 28 años (1989–2016) de flujo y salinidad en el Scott Creek. El análisis de la deposición y exportación de cloruro a escala de cuenca determinó que aproximadamente tres veces más cloruro se exporta de lo que se ingresa a la cuenca por fuentes atmosféricas. Durante el período investigado, la carga de sal exportada a las aguas superficiales disminuyó, en promedio, 6.4 toneladas anuales debido a la renovación en las cuencas. El análisis del balance de salinidad mensual de una subcuenca drenada por una corriente intermitente demuestra que la acumulación de cloruro, en lugar de la exportación, se produce durante los años de sequía. En la cuenca en su conjunto, las sales se descargan a través del flujo de agua subterránea en la corriente permanente en todos los años del registro. Las aguas subterráneas profundas se introducen en la corriente permanente, con la mezcla de aguas subterráneas poco profundas, más salinas y profundas. Por lo tanto, una interacción compleja de los parámetros hidrológicos del paisaje, como el relieve, la precipitación, la deposición de cloruros y el historial de uso de la tierra determinan si una cuenca se salina o se desaliniza.

(南澳大利亚洛夫缇山脉)一个多雨流域盐平衡及刷洗历程

摘要

人类引起的地表盐渍化,包括旱地盐渍化的影响,正在给南澳大利亚许多流域带来负面影响。由于本地深根植被砍伐导致的地下水补给增加以及随后的地下水位上升,是形成地表盐渍化的重要原因。在排水差的低地地区,地下水上升可导致蒸散发增加、包气带盐分上移,引起盐分在土壤表面富集。同时,这些补给增加及地下水上升相同的过程也可使盐渍化降低,因为包气带累积的盐分被洗刷入地表水体。在南澳大利亚洛夫缇山脉一个多雨地区的研究报告了流域的脱盐过程。根据每月的数据,作者分析了Scott Creek 28年(1989–2016)的径流和盐分数据。从流域尺度的氯化物沉积和输出分析发现,输出的氯化物大约是从大气沉降氯化物的三倍多。在调查的时间段内,由于流域的淡化,输出到地表水体的盐分荷载平均每年减少6.4公吨。然而,流域中一条间歇河亚流域每月的盐度平衡分析显示,在干旱年份,氯化物还在这亚流域富积。对于整个流域,在有记录的每一年中,盐分都通过地下水流被洗刷到常流河中。当深部地下水排泄到径流过程中,深部的较咸的地下水和浅层较淡的地下水混合之后流入到常流河中。这些发现表明,流域的水文因子诸如地形起伏、降水、氯化物沉降、以及土地利用历史之间复杂的相互作用决定了流域是否正在经历盐渍化或者脱盐过程。

Balanço de salinidade e quantificação histórica da descarga em uma bacia hidrográfica de alta precipitação (Cadeia do Monte Lofty, Sul da Austrália)

Resumo

A salinização da paisagem induzida pelo homem, incluindo os efeitos da salinidade da terra seca, está afetando negativamente muitas áreas de captação no sul da Austrália. A salinização ocorre devido ao aumento da recarga e aumento do lençol freático após o desmatamento da vegetação nativa de raízes profundas. Em áreas baixas com drenagem deficiente, o aumento do nível do lençol freático pode levar ao aumento da evapotranspiração, à mobilização do sal da zona vadosa e ao escaldamento do sal. Alternativamente, esses mesmos processos de aumento de recarga e elevação de água subterrânea podem levar à diminuição da salinização, à medida que sais acumulados são lançados nas águas superficiais. Este estudo em uma área de alta precipitação na Cadeia do Monte Lofty do Sul da Austrália documenta a dessalinização da bacia hidrográfica. Um registro de 28 anos (1989–2016) de fluxo e salinidade em Scott Creek foi analisado com base em dados mensais. A análise da deposição e exportação de cloreto em escala de bacia determinou que aproximadamente três vezes mais cloreto é exportado do que a entrada na bacia por fontes atmosféricas. Durante o período de tempo investigado, a carga de sal exportada para a água superficial diminuiu, em média, 6.4 toneladas por ano devido a dulcificação da bacia. A análise do balanço mensal de salinidade de uma subacia drenada por um riacho intermitente demonstra que o acúmulo de cloreto, ao invés de exportação, ocorre durante os anos de seca. Na área de captação como um todo, os sais estão sendo liberados pelo fluxo de água subterrânea no fluxo permanente em todos os anos do registro. A água subterrânea profunda é introduzida no fluxo permanente, com a mistura de águas subterrâneas mais profundas, mais salinas e mais rasas. Assim, uma interação complexa de parâmetros hidrológicos da paisagem, como relevo, precipitação, deposição de cloreto e histórico de uso da terra, determina se uma bacia sofre salinização ou dessalinização.

Notes

Acknowledgements

Assistance with data collection by the staff at Water Data Services PTY Ltd. is gratefully acknowledged. Telephone conversations and email correspondence with the staff at the Bureau of Meteorology and South Australian Department of Environment, Water and Natural Resources were helpful.

Funding information

This project was funded by a Flinders University Grant to Bestland.

References

  1. Ali NS, Mo K, Kim M (2012) A case study on the relationship between conductivity and dissolved solids to evaluate the potential for reuse of reclaimed industrial wastewater. KSCE J Civ Eng 16(5):708–713Google Scholar
  2. Allison G, Cook P, Barnett S, Walker G, Jolly I, Hughes M (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119(1–4):1–20Google Scholar
  3. AMLRNRM (2013) Adelaide and Mount Lofty Ranges natural resources management plan, strategic plan 2014–15 to 2023–24. Adelaide and Mount Lofty Ranges Natural Resources Management Board, Adelaide, AustraliaGoogle Scholar
  4. Anderson TA, Bestland EA, Soloninka L, Wallis I, Banks EW, Pichler M (2017) A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia). Hydrogeol J 25:2435–2451Google Scholar
  5. Banks EW, Simmons C, Cranswick R, Love A, Werner A, Bestland E, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17(8):1969–1989Google Scholar
  6. Bestland EA, Stainer G (2013) Down-slope change in soil hydrogeochemistry due to seasonal water table rise: implications for groundwater weathering. Catena 111:122–131Google Scholar
  7. Bestland EA, Milgate S, Chittleborough D, Vanleeuwen J, Pichler M, Soloninka L (2009) The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia. Hydrol Earth Syst Sci 13:1–14Google Scholar
  8. Bestland EA, Liccioli C, Soloninka L, Chittleborough DJ, Fink D (2016) Catchment-scale denudation and chemical erosion rates determined from 10Be and mass balance geochemistry (Mt. Lofty ranges of South Australia). Geomorphology 270:40–54Google Scholar
  9. Bettio L (2006) Seasonal climate summary southern hemisphere (autumn 2005): an exceptionally warm and dry autumn across Australia. Aust Meteorol Mag 55(1)Google Scholar
  10. Biggs AJ (2006) Rainfall salt accessions in the Queensland Murray–Darling basin. Soil Res 44(6):637–645Google Scholar
  11. Biggs AJ, Silburn DM, Power RE (2013) Catchment salt balances in the Queensland Murray–Darling basin, Australia. J Hydrol 500:104–113Google Scholar
  12. Blackburn G, McLeod S (1983) Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia. Soil Res 21(4):411–434Google Scholar
  13. BOM (2016) Climate statistics for Australian sites. Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/ca_sa_names.shtml. Accessed 22 September 2016
  14. Brown P, Halvorson A, Siddoway F, Mayland H, Miller M (1983) Saline seep diagnosis, control and reclamation. USDA Conservation research report no. 30, US Department of Agriculture, Washington, DCGoogle Scholar
  15. Cartwright I, Gilfedder B, Hofmann H (2013) Chloride imbalance in a catchment undergoing hydrological change: upper Barwon River, Southeast Australia. Appl Geochem 31:187–198Google Scholar
  16. Chittleborough D, Smettem K, Cotsaris E, Leaney F (1992) Seasonal changes in pathways of dissolved organic carbon through a hillslope soil (Xeralf) with contrasting texture. Soil Res 30(4):465–476Google Scholar
  17. Cox J, Fritsch E, Fitzpatrick RW (1996) Interpretation of soil features produced by ancient and modern processes in degraded landscapes: VII. water duration. Soil Res 34(6):803–824Google Scholar
  18. Cranswick R (2005) Hillslope scale geological controls on surface water–groundwater interaction: evidence of active recharge to a fractured rock aquifer. Honours Thesis, Flinders University South Australia, Adelaide, AustraliaGoogle Scholar
  19. Currell M, Gleeson T, Dahlhaus P (2016) A new assessment framework for transience in hydrogeological systems. Ground Water 54(1):4–14Google Scholar
  20. Dahlhaus P, Cox JW, Simmons CT, Smitt C (2008) Beyond hydrogeologic evidence: challenging the current assumptions about salinity processes in the Corangamite region, Australia. Hydrogeol J 16(7):1283Google Scholar
  21. Dawes WR, Gilfedder M, Walker GR, Evans W (2004) Biophysical modelling of catchment-scale surface water and groundwater response to land-use change. Math Comput Simul 64(1):3–12Google Scholar
  22. DEHAA (1999) Scott Creek conservation park management plan. Dept. for Environment, Heritage and Aboriginal Affairs, Adelaide, AustraliaGoogle Scholar
  23. EPA (2013) Scott Creek, Scott Bottom aquatic ecosystem condition report. Environmental Protection Agency. http://www.epa.sa.gov.au/reports_water/c0244-ecosystem-2013. Accessed 5 October 2016
  24. Eriksson E (1959) The yearly circulation of chloride and sulfur in nature: meteorological, geochemical and pedological implications, part I. Tellus 11(4):375–403Google Scholar
  25. Eriksson E (1960) The yearly circulation of chloride and sulfur in nature: meteorological, geochemical and pedological implications, part II. Tellus 12(1):64–109Google Scholar
  26. Fitzpatrick RW, Boucher S, Naidu R, Fritsch E (1994) Environmental consequences of soil sodicity. Soil Res 32(5):1069–1093Google Scholar
  27. George R, McFarlane D, Nulsen B (1997) Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol J 5(1):6–21Google Scholar
  28. Gilfedder M, Walker GR, Dawes WR, Stenson MP (2009) Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale. Environ Model Softw 24(2):262–269Google Scholar
  29. Greeff G (1994) Ground-water contribution to stream salinity in a shale catchment, RSA. Ground Water 32(1):63–70Google Scholar
  30. Guan H, Love A, Simmons C, Hutson J, Ding Z (2010a) Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance. Hydrol Earth Syst Sci 14(7):1233Google Scholar
  31. Guan H, Love A, Simmons C, Makhnin O, Kayaalp A (2010b) Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping. Hydrol Earth Syst Sci 14(5):801Google Scholar
  32. Harrington G (2004a) Hydrogeological investigation of the Mount Lofty Ranges, progress report 3: Borehole water and formation characteristics at the Scott Bottom research site, Scott Creek Catchment. Report DWLBC 2004/03, Dept. of Water, Land and Biodiversity Conservation, Adelaide, AustraliaGoogle Scholar
  33. Harrington G (2004b) Hydrogeological investigation of the Mount Lofty Ranges, progress report 4: groundwater–surface water interactions in the Scott Creek, Marne River and Tookayerta Creek Catchments. Report DWLBC 2004/03, Dept. of Water, Land and Biodiversity Conservation, Adelaide, AustraliaGoogle Scholar
  34. Hatton T, Ruprecht J, George R (2003) Preclearing hydrology of the Western Australia wheatbelt: target for the future. Plant Soil 257(2):341–356Google Scholar
  35. James-Smith J, Harrington G (2002) Hydrogeological investigation of the Mount Lofty Ranges, progress report 1: hydrogeology and drilling phase 1 for Scott Creek catchment. Dept. for Water, Land and Biodiversity Conservation, Adelaide, AustraliaGoogle Scholar
  36. Jayawickreme DH, Santoni CS, Kim JH, Jobbágy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21(7):2367–2379Google Scholar
  37. Jolly I, Walker G, Stace P, van der Wel B, Leaney R (2000) Assessing the impacts of dryland salinity on South Australia’s water resources. CSIRO technical report 9/00, CSIRO Land and Water, Adelaide, AustraliaGoogle Scholar
  38. Jolly I, Williamson D, Gilfedder M, Walker G, Morton R, Robinson G, Jones H, Zhang L, Dowling T, Dyce P (2001) Historical stream salinity trends and catchment salt balances in the Murray–Darling basin, Australia. Mar Freshw Res 52(1):53–63Google Scholar
  39. Keywood M, Chivas A, Fifield L, Cresswell R, Ayers G (1997) The accession of chloride to the western half of the Australian continent. Soil Res 35(5):1177–1190Google Scholar
  40. Kretchmer P (2007) Determining the contribution of groundwater to stream flow in an upland catchment using a combined salinity mixing model and modified curve number approach. Honours Thesis, Flinders University South Australia, Adelaide, AustraliaGoogle Scholar
  41. Loh I, Stokes R (1981) Predicting stream salinity changes in South-Western Australia. Dev Agric Eng 2:227–254Google Scholar
  42. Mackay N, Hillman T, Rolls J (1988) Water quality of the river Murray: review of monitoring 1978 to 1986. Murray-Darling Basin Commission, Canberra, AustraliaGoogle Scholar
  43. Marchesini VA, Giménez R, Nosetto MD, Jobbágy EG (2017) Ecohydrological transformation in the Dry Chaco and the risk of dryland salinity: following Australia’s footsteps? Ecohydrology 10(4):e1822Google Scholar
  44. Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Government Printing Office, Washington, DCGoogle Scholar
  45. Milgate SA (2007) Hydrochemical investigation of flow pathways through quartz-sand and duplex soils during a storm event: Mackreath Creek, Mount Lofty Ranges. Honours Thiesis, Flinders University South Australia, Adelaide, AustraliaGoogle Scholar
  46. Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28(7):859–879Google Scholar
  47. Nicholson BL, Clark RD (1992) Nutrient loads in the Onkaparinga River system. EWS report no. 92/17. Dept. of Engineering and Water Supply, Adelaide, AustraliaGoogle Scholar
  48. Norman C (1995) Effect of groundwater pump management on reclaiming salinised land in the Goulburn Valley, Victoria. Aust J Exp Agric 35(2):215–222Google Scholar
  49. Pannell DJ (2001) Dryland salinity: economic, scientific, social and policy dimensions. Aust J Agric Resour Econ 45(4):517–546Google Scholar
  50. Peck A, Hurle DH (1973) Chloride balance of some farmed and forested catchments in southwestern Australia. Water Resour Res 9(3):648–657Google Scholar
  51. Pichler M (2009) Characterization of spatial and seasonal changes of dissolved organic carbon in the soils of a South Australian catchment. Honours Thesis, Flinders University South Australia, Adelaide, AustraliaGoogle Scholar
  52. Poulsen DL, Simmons CT, Le Galle La Salle C, Cox JW (2006) Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeol J 14(7):1339–1359Google Scholar
  53. Preiss WV (1987) The Adelaide Geosyncline: Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Govt. Printer, South Australia, Adelaide, AustraliaGoogle Scholar
  54. Ranville JF, Chittleborough DJ, Beckett R (2005) Particle-size and element distributions of soil colloids. Soil Sci Soc Am J 69(4):1173–1184Google Scholar
  55. Ruprecht J, Schofield N (1989) Analysis of streamflow generation following deforestation in Southwest Western Australia. J Hydrol 105(1–2):1–17Google Scholar
  56. Ruprecht J, Schofield N (1991) Effects of partial deforestation on hydrology and salinity in high salt storage landscapes: I. extensive block clearing. J Hydrol 129(1–4):19–38Google Scholar
  57. SAW (2017) SA Water data set: Scott Creek @ Scott Bottom, A5030502AA. http://wds.amlr.waterdata.com.au/StationDetails.aspx?sno=A5030502AA. Accessed 12 January 2017
  58. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11(10):1577–1593Google Scholar
  59. Schofield N (1992) Tree planting for dryland salinity control in Australia. Agrofor Syst 20(1–2):1–23Google Scholar
  60. Sivapalan M, Ruprecht JK, Viney NR (1996) Water and salt balance modelling to predict the effects of land-use changes in forested catchments: 1. small catchment water balance model. Hydrol Process 10(3):393–411Google Scholar
  61. Smitt C, Gilfedder M, Dawes W, Petheram C, Walker G (2003) Modelling the effectiveness of recharge reduction for salinity management: sensitivity to catchment characteristics. CSIRO technical report 20/03, CSIRO Land and Water, Canberra, AustraliaGoogle Scholar
  62. Stevens D, Cox J, Chittleborough D (1999) Pathways of phosphorus, nitrogen, and carbon movement over and through texturally differentiated soils, South Australia. Aust J Soil Res 37(4):679–679Google Scholar
  63. Tyagi N (2003) Managing saline and alkaline water for higher productivity. In: Kijne JWBR, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI, Wallingford, UK, pp 69–87Google Scholar
  64. USGS (2018) United States geological survey water data for the nation. https://waterdata.usgs.gov/nwis. Accessed 16 August 2018
  65. Walker J, Bullen F, Williams B (1993) Ecohydrological changes in the Murray-Darling basin: I. the number of trees cleared over two centuries. J Appl Ecol 30:265–273Google Scholar
  66. Walker GR, Gilfedder M, Williams J (1999) Effectiveness of current farming systems in the control of dryland salinity. CSIRO Land and Water, Canberra, AustraliaGoogle Scholar
  67. Watkins A (2005) The Australian drought of 2005. World Meteorol Org Bull 54(3):156–162Google Scholar
  68. Williams J, Hook RA, Gascoigne HL (1998) Farming action: catchment reaction: the effect of dryland farming on the natural environment. CSIRO, Collingwood, AustraliaGoogle Scholar
  69. Williamson D, van der Well B (1991) Quantification of the impact of dryland salinity on water resources in the Mt Lofty Ranges, SA. Int. Hydrology and Water Resources Symp. Challenges for Sustainable Development, Perth, WA, October 2–4, 1991, National Conf. Publ., Inst of Eng. Aust., Barton, Australia, pp 48–52Google Scholar
  70. Williamson D, Stokes R, Ruprecht J (1987) Response of input and output of water and chloride to clearing for agriculture. J Hydrol 94(1–2):1–28Google Scholar
  71. Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water 37(1):2–5Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas A. Anderson
    • 1
    Email author
  • Erick A. Bestland
    • 1
  • Ilka Wallis
    • 1
    • 2
    • 3
  • Huade D. Guan
    • 1
    • 2
  1. 1.Flinders UniversityAdelaideAustralia
  2. 2.National Centre for Groundwater Research and TrainingBedford ParkAustralia
  3. 3.University of ManitobaWinnipegCanada

Personalised recommendations