Advertisement

Problematik der fehlgeschlagenen Endoprothese bei posttraumatischer Arthrose am oberen Sprunggelenk

  • Sebastian FischerEmail author
  • Yves Gramlich
Leitthema

Zusammenfassung

Hintergrund

Die posttraumatische Arthrose des oberen Sprunggelenks (OSG) stellt noch immer eine Herausforderung in der operativen Versorgung dar. Während bei frustranem konservativem Therapieansatzes die Arthrodese mittels Schrauben- oder Plattenosteosynthese in der Literatur mittlerweile durchgängig als Goldstandard bezeichnet wird, stellt die Endoprothese der dritten Generation dennoch eine Therapieoption dar. Ungeachtet des modernen Prothesendesigns und etablierter Operationsschritte ist ein stetiger Rückgang der Primärimplantationen zu verzeichnen. Bei Versagen der Prothese bleibt zumeist nur die Konversion in eine OSG-Arthrodese.

Methodik

Unter Durchführung einer selektiven Literaturrecherche sowie Darstellung eigener Forschungsergebnisse werden Ursachen für das Versagen von OSG-Prothesen als auch die Diagnostik bei schmerzhafter Endoprothese und Therapieoptionen aufgezeigt.

Ergebnis und Schlussfolgerung

Im eigenen Patientengut stellte die symptomatische Zystenbildung mit 20 % den häufigsten Revisionsgrund dar. Die Konversion einer fehlgeschlagenen OSG-Prothese in eine OSG-Arthrodese birgt ein unbefriedigendes klinisches Ergebnis und bleibt sowohl der Primärimplantation als auch der primären Arthrodese in den Funktions- und Lebensqualitätsscores unterlegen. Der Gedanke, eine Prothesenimplantation am oberen Sprunggelenk als ersten Schritt und die OSG-Arthrodese als Rückzugsmöglichkeit zu betrachten, ist obsolet.

Schlüsselwörter

Prothese Arthrodese Konversion Revision Zysten 

Problem of failed endoprosthesis in posttraumatic arthrosis of the upper ankle joint

Abstract

Background

Posttraumatic end-stage arthrosis of the upper ankle joint still represents a challenge in the surgical treatment. After exhausting the possibilities for conservative treatment, arthrodesis with screws or plates is now consistently referred to as the gold standard. Nevertheless, third generation total ankle arthroplasty (TAA) still provides a treatment option. Despite the modern prosthesis design and established surgical procedures, there has been a steady decline in the number of primary implantations. In the case of failure and malfunction of the prosthesis in most cases conversion to arthrodesis is performed.

Methods

By carrying out a selective literature search and presenting own research results, the causes for failure of TAA as well as the diagnostics for painful TAA and treatment options are shown.

Results and conclusion

In our own patient collective, symptomatic cyst formation was the most common reason for revision (20%) of TAA. The conversion of a failed TAA prosthesis to arthrodesis represents an unsatisfactory clinical outcome and shows inferior results to both primary TAA and primary arthrodesis in functional and quality of life scores. The idea of considering implantation of a prosthesis in the upper ankle joint as a first step with respect to the possibility of a later arthrodesis is obsolete.

Keywords

Prosthesis Arthrodesis Conversion Revision Cysts 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Fischer und Y. Gramlich geben an, dass der wissenschaftliche Beitrag unabhängig und produktneutral verfasst wurde und kein Interessenkonflikt besteht.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen stehen im Einklang mit nationalem Recht sowie der Deklaration von Helsinki von 1975 (in der aktuellen überarbeiteten Fassung).

Literatur

  1. 1.
    Abdel Karim M, Andrawis J, Bengoa F et al (2018) Hip and knee section, diagnosis, algorithm: proceedings of International Consensus on Orthopedic Infections. J Arthroplasty.  https://doi.org/10.1016/j.arth.2018.09.018 CrossRefPubMedGoogle Scholar
  2. 2.
    Althoff A, Cancienne JM, Cooper MT, Werner BC (2018) Patient-related risk factors for periprosthetic ankle joint infection: an analysis of 6977 total ankle arthroplasties. J Foot Ankle Surg 57:269–272.  https://doi.org/10.1053/j.jfas.2017.09.006 CrossRefPubMedGoogle Scholar
  3. 3.
    Arcângelo J, Guerra-Pinto F, Pinto A et al (2017) Peri-prosthetic bone cysts after total ankle replacement. A systematic review and meta-analysis. Foot Ankle Surg.  https://doi.org/10.1016/j.fas.2017.11.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Aubret S, Merlini L, Fessy M, Besse J‑L (2018) Poor outcomes of fusion with trabecular metal implants after failed total ankle replacement: early results in 11 patients. Orthop Traumatol Surg Res 104:231–237.  https://doi.org/10.1016/j.otsr.2017.11.022 CrossRefPubMedGoogle Scholar
  5. 5.
    Besse J‑L (2015) Osteolytic cysts with total ankle replacement: frequency and causes? Foot Ankle Surg 21:75–76.  https://doi.org/10.1016/j.fas.2015.03.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Besse J-L, Brito N, Lienhart C (2009) Clinical evaluation and radiographic assessment of bone lysis of the AES total ankle replacement. Foot & Ankle Int 30(10):964–975.  https://doi.org/10.3113/FAI.2009.0964 CrossRefGoogle Scholar
  7. 7.
    Cody EA, Bejarano-Pineda L, Lachman JR et al (2018) Risk factors for failure of total ankle arthroplasty with a minimum five years of follow-up. Foot Ankle Int.  https://doi.org/10.1177/1071100718806474 CrossRefPubMedGoogle Scholar
  8. 8.
    Gehrke T, Parvizi J (2014) Proceedings of the International Consensus Meeting on Periprosthetic Joint Infection. J Arthroplasty 29:4.  https://doi.org/10.1016/j.arth.2013.09.024 CrossRefGoogle Scholar
  9. 9.
    Goswami K, Parvizi J, Maxwell Courtney P (2018) Current recommendations for the diagnosis of acute and chronic PJI for hip and knee – cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing. Curr Rev Musculoskelet Med 11:428–438.  https://doi.org/10.1007/s12178-018-9513-0 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gougoulias N, Khanna A, Maffulli N (2010) How successful are current ankle replacements?: a systematic review of the literature. Clin Orthop Relat Res 468:199–208.  https://doi.org/10.1007/s11999-009-0987-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Gramlich Y, Neun O, Klug A et al (2018) Total ankle replacement leads to high revision rates in post-traumatic end-stage arthrosis. Int Orthop 42:2375–2381.  https://doi.org/10.1007/s00264-018-3885-z CrossRefPubMedGoogle Scholar
  12. 12.
    Gross CE, Adams SB, Easley M et al (2017) Surgical treatment of bony and soft-tissue impingement in total ankle arthroplasty. Foot Ankle Spec 10:37–42.  https://doi.org/10.1177/1938640016666918 CrossRefPubMedGoogle Scholar
  13. 13.
    Henricson A, Ågren P‑H (2007) Secondary surgery after total ankle replacement. Foot Ankle Surg 13:41–44.  https://doi.org/10.1016/j.fas.2006.10.002 CrossRefGoogle Scholar
  14. 14.
    Jastifer JR, Coughlin MJ (2015) Long-term follow-up of mobile bearing total ankle arthroplasty in the United States. Foot Ankle Int 36:143–150.  https://doi.org/10.1177/1071100714550654 CrossRefPubMedGoogle Scholar
  15. 15.
    Kamrad I, Henricson A, Magnusson H et al (2016) Outcome after salvage arthrodesis for failed total ankle replacement. Foot Ankle Int 37:255–261.  https://doi.org/10.1177/1071100715617508 CrossRefPubMedGoogle Scholar
  16. 16.
    Kim BS, Choi WJ, Kim J, Lee JW (2013) Residual pain due to soft-tissue impingement after uncomplicated total ankle replacement. Bone Joint J 95-B:378–383.  https://doi.org/10.1302/0301-620X.95B3.31219 CrossRefPubMedGoogle Scholar
  17. 17.
    Labek G, Thaler M, Janda W et al (2011) Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Joint Surg Br 93:293–297.  https://doi.org/10.1302/0301-620X.93B3.25467 CrossRefPubMedGoogle Scholar
  18. 18.
    Lachman JR, Ramos JA, Adams SB et al (2018) Patient-reported outcomes before and after primary and revision total ankle arthroplasty. Foot Ankle Int 99:1071100718794956.  https://doi.org/10.1177/1071100718794956 CrossRefGoogle Scholar
  19. 19.
    Mason LW, Wyatt J, Butcher C et al (2015) Single-photon-emission computed tomography in painful total ankle replacements. Foot Ankle Int 36:635–640.  https://doi.org/10.1177/1071100715573050 CrossRefPubMedGoogle Scholar
  20. 20.
    Müller S, Walther M, Röser A, Krenn V (2016) Endoprosthesis failure in the ankle joint. Orthopäde 46:234–241.  https://doi.org/10.1007/s00132-016-3372-4 CrossRefGoogle Scholar
  21. 21.
    Myerson MS, Shariff R, Zonno AJ (2014) The management of infection following total ankle replacement: demographics and treatment. Foot Ankle Int 35:855–862.  https://doi.org/10.1177/1071100714543643 CrossRefPubMedGoogle Scholar
  22. 22.
    Nunag P, Vun SH, Atiya S et al (2014) Surgical tip: titanium foam blocks can simplify fusion of failed total ankle replacements. Foot (Edinb) 24:111–115.  https://doi.org/10.1016/j.foot.2014.06.002 CrossRefGoogle Scholar
  23. 23.
    Patton D, Kiewiet N, Brage M (2015) Infected total ankle arthroplasty: risk factors and treatment options. Foot Ankle Int 36:626–634.  https://doi.org/10.1177/1071100714568869 CrossRefPubMedGoogle Scholar
  24. 24.
    Rahm S, Klammer G, Benninger E et al (2015) Inferior results of salvage arthrodesis after failed ankle replacement compared to primary arthrodesis. Foot Ankle Int 36:349–359.  https://doi.org/10.1177/1071100714559272 CrossRefPubMedGoogle Scholar
  25. 25.
    Raikin SM, Sandrowski K, Kane JM et al (2017) Midterm outcome of the agility total ankle arthroplasty. Foot Ankle Int 38:662–670.  https://doi.org/10.1177/1071100717701232 CrossRefPubMedGoogle Scholar
  26. 26.
    Saltzman CL, Salamon ML, Blanchard GM et al (2005) Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J 25:44–46PubMedPubMedCentralGoogle Scholar
  27. 27.
    Singh G, Reichard T, Hameister R et al (2016) Ballooning osteolysis in 71 failed total ankle arthroplasties. Acta Orthop 87:401–405.  https://doi.org/10.1080/17453674.2016.1188346 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sopher RS, Amis AA, Calder JD, Jeffers JRT (2017) Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Med Eng Phys 42:80–90.  https://doi.org/10.1016/j.medengphy.2017.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Strauß V, Scheer A‑C, Andermahr J (2017) Pathogenese von Knochenzysten nach Sprunggelenksendoprothesen. Fuß Sprunggelenk 15:97–107.  https://doi.org/10.1016/j.fuspru.2017.04.001 CrossRefGoogle Scholar
  30. 30.
    Sutter R, Dietrich T (2018) Reduktion von Metallartefakten in der muskuloskelettalen Bildgebung. Radiopraxis 11:E41–E60.  https://doi.org/10.1055/a-0752-6970 CrossRefGoogle Scholar
  31. 31.
    Vulcano E, Myerson MS (2017) The painful total ankle arthroplasty: a diagnostic and treatment algorithm. Bone Joint J 99-B:5–11.  https://doi.org/10.1302/0301-620X.99B1.37536 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung für orthopädische und traumatologische FußchirurgieBG-Unfallklinik Frankfurt am MainFrankfurt am MainDeutschland
  2. 2.Abteilung Unfallchirurgie und Orthopädische ChirurgieBG Unfallklinik Frankfurt am MainFrankfurt/MainDeutschland

Personalised recommendations