University-industry collaborations—The key to radical innovations?

  • William Arant
  • Dirk Fornahl
  • Nils Grashof
  • Kolja HesseEmail author
  • Cathrin Söllner
Original Paper


Radical innovations are an important factor for long-term economic growth. Universities provide basic research and knowledge that form the basis for future innovations. Previous research has investigated the effects of universities, university-industry partnerships and proximity on factors such as innovations, knowledge spillovers, entrepreneurial activities, as well as regional growth, wealth and competitiveness. However, the role that university-industry collaborations play in radical innovations, mediated by various measures of proximity such as cognitive or geographic distance, has not yet been explored. With this study, we illuminate the conditions under which university-industry collaborations are the key to radical innovations in German firms.

Combining firm, patent and subsidy data, we built a data set consisting of 8404 firms that patented between the years 2012 and 2014. Based on the patent data, we identified the emergence of radical innovations by using new technology combinations as a proxy for (radical) novelty. As our main independent variables, we computed the cognitive distance of firms, universities and research institutions as well as the geographic distance between these partners. We identified formal relationships through publicly supported R&D collaborations between universities, firms, and research institutions using the German subsidy catalogue.

Our research is vital for understanding the conditions under which university-industry collaborations contribute to the creation of radical innovations. While not only closing a research gap, this paper has practical ramifications for companies, universities as well as policy-makers by evaluating the concrete effects of university-industry collaborations on the probability to generate radical innovations.


Radical innovations Cognitive distance Geographic distance University-industry collaboration 

Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?


Radikale Innovationen stellen einen wichtigen Faktor für langfristiges ökonomisches Wachstum dar. Universitäten betreiben Grundlagenforschung und generieren Wissen, dass die Basis für zukünftige Innovationen legt. Bisherige Forschung hat den Einfluss von Universitäten, Kooperationen zwischen Universitäten und Industrie sowie deren Nähe zueinander sowohl auf Innovationsprozesse, Wissensspillover und Gründungsaktivitäten als auch auf regionales Wachstum, Wohlstand und Wettbewerbsfähigkeit untersucht. Allerdings wurde die Rolle von Universität-Industrie-Kooperationen kombiniert mit verschiedenen Nähekonzepten wie geographische und kognitive Nähe bisher nicht untersucht. Mit dieser Studie geben wir Einblicke, unter welchen Gegebenheiten Universitäten-Industrie-Kooperationen der Schlüssel zu radikalen Innovationen sind.

Hierfür kombinieren wir Firmen‑, Patent- und Fördermitteldaten zu einem Datensatz, der 8404 Firmen beinhaltet, die zwischen 2012 und 2014 patentiert haben. Basierend auf den Patentdaten haben wir die Entstehung von radikalen Innovationen identifiziert, indem wir neue Technologiekombinationen als Proxy für (radikale) Neuheit genommen haben. Unsere erklärenden Variablen geographische und kognitive Distanz haben wir zwischen Firmen, Universitäten und Forschungsinstituten kalkuliert. Kooperationen zwischen diesen Akteuren haben wir mittels öffentlich geförderten Forschungsprojekten aus dem Deutschen Förderkatalog identifiziert.

Unsere Studie hilft dabei die Bedingungen, unter denen Kooperationen zwischen Universitäten und Firmen zu einer höheren Wahrscheinlichkeit für die Entstehung von radikalen Innovationen führen, besser zu verstehen. Dabei wird nicht nur eine Forschungslücke geschlossen, sondern es können auch Handlungsempfehlungen für Unternehmen, Universitäten und politische Entscheidungsträger aufgezeigt werden.

JEL Codes

031 032 034 



  1. Ahuja G, Lampert C (2001) Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strateg Manage J 22(6–7):521–543. Google Scholar
  2. Albert MB, Avery D, Narin F, McAllister P (1991) Direct validation of citation counts as indicators of industrially important patents. Res Policy 20(3):251–259. Google Scholar
  3. Arrow KJ (1962) Economic welfare and the allocation of resources for invention. In: Nelson R (ed) The rate and direction of inventive activity. Princeton University Press, Princeton, pp 609–626Google Scholar
  4. Arthur WB (2007) The structure of invention. Res Policy 36(2):274–287. Google Scholar
  5. Arts S, Veugelers R (2014) Technology familiarity, recombinant novelty, and breakthrough invention. Ind Corp Change 24(6):1215–1246. Google Scholar
  6. Audretsch D, Lehmann E, Warning S (2005) University spillovers and new firm location. Res Policy 34:1113–1122. Google Scholar
  7. Audretsch D, Hülsbeck M, Lehmann EE (2012) Regional competitiveness, university spillovers and entrepreneurial activity. Small Bus Econ 39(3):587–601. Google Scholar
  8. Baba Y, Shichijo N, Sedita SR (2009) How do collaborations with universities affect firms’ innovative performance? The role of “Pasteur scientists” in the advanced materials field. Res Policy 38(5):756–764. Google Scholar
  9. Basalla G (1988) The evolution of technology. Cambridge University Press, CambridgeGoogle Scholar
  10. Bathelt H, Turi P (2011) Local, global and virtual buzz: The importance of face-to-face contact in economic interaction and possibilities to go beyond. Geoforum 42(5):520–529. Google Scholar
  11. Beck M, Lopes-Bento C, Schenker-Wicki A (2016) Radical or incremental: Where does R&D policy hit? Res Policy 45(4):869–883. Google Scholar
  12. Belderbos R, Carree M, Lokshin B (2004) Cooperative R&D and firm performance. Res Policy 33(10):1477–1492. Google Scholar
  13. Bundesministerium für Bildung und Forschung (2018) Startschuss für Agentur zur Förderung von Sprunginnovationen. Pressemitteilung: 075/2018Google Scholar
  14. Boschma R (2005) Proximity and innovation: A critical assessment. Reg Stud 39(1):61–74. Google Scholar
  15. Boschma R (2017) Relatedness as driver of regional diversification: A research agenda. Reg Stud 51(3):351–364. Google Scholar
  16. Boschma R, Frenken K (2010) The spatial evolution of innovation networks: A proximity perspective. In: Boschma R, Martin R (eds) The handbook of evolutionary economic geography. Edward Elgar, Cheltenham, pp 120–135Google Scholar
  17. Broekel T (2015) The co-evolution of proximities—A network level study. Reg Stud 49(6):921–935. Google Scholar
  18. Broekel T, Boschma R (2012) Knowledge networks in the Dutch aviation industry: The proximity paradox. J Econ Geogr 12:409–433. Google Scholar
  19. Broekel T, Graf H (2012) Public research intensity and the structure of German R&D networks: A comparison of 10 technologies. Econ Innovat New Technol 21(4):345–372. Google Scholar
  20. Cairncross FC (2001) The death of distance: How the communications revolution is changing our lives. Harvard Business School Press, BostonGoogle Scholar
  21. Castaldi C, Frenken K, Los B (2015) Related variety, unrelated variety and technological breakthroughs: An analysis of US state-level patenting. Reg Stud 49(5):767–781. Google Scholar
  22. Cohen W, Levinthal D (1990) Absorptive capacity: A new perspective on learning and innovation. Adm Sci Q 35:128–152. Google Scholar
  23. Cohen WM, Nelson RR, Walsh JP (2000) Protecting their intellectual assets: Appropriability conditions and why US manufacturing firms patent (or not). NBER working paper no. 7552. Google Scholar
  24. Czarnitzki D, Lopes-Bento C (2010) Evaluation of public R&D policies: A cross-country comparison. ZEW discussion paper no. 10-073. ZEW, MannheimGoogle Scholar
  25. Dahlin KB, Behrens DM (2005) When is an invention really radical? Defining and measuring technological radicalness. Res Policy 34(5):717–737. Google Scholar
  26. David PA, Hall BH, Toole A (2000) Is public R&D a complement or substitute for private R&D? A review of the econometric evidence. Res Policy 29(4–5):497–529. Google Scholar
  27. Dosi G (1982) Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Res Policy 11(3):147–162. Google Scholar
  28. Drejer I, Østergaard CR (2017) Exploring determinants of firms’ collaboration with specific universities: Employee-driven relations and geographical proximity. Reg Stud 51(8):1192–1205. Google Scholar
  29. Ejermo O (2003) Patent diversity as a predictor of regional innovativeness in Sweden. CESPRI working paper 140Google Scholar
  30. Fleming L (2001) Recombinant uncertainty in technological search. Manage Sci 47(1):117–132. Google Scholar
  31. Fleming L (2007) Breakthroughs and the “long tail” of innovation. MIT Sloan Manage Rev 49(1):69–74 (+93)Google Scholar
  32. Fleming L, Sorenson O (2004) Science as a map in technological search. Strateg Manage J 25(8–9):909–928. Google Scholar
  33. Fornahl D, Broekel T, Boschma R (2011) What drives patent performance of German biotech firms? The impact of R&D subsidies, knowledge networks and their location. Pap Reg Sci 90(2):395–418. Google Scholar
  34. Friis C, Karlsson C, Paulsson T (2006) Relating entrepreneurship to economic growth. In: Johansson B, Karlsson C, Stough R (eds) The emerging digital economy. Advances in spatial science. Springer, Berlin, HeidelbergGoogle Scholar
  35. Fritsch M, Schwirten C (2006) Enterprise-University Co-operation and the Role of Public Research Institutions in Regional Innovation Systems. Ind Innov 6(1):69–83. Google Scholar
  36. Geuna A (2001) The changing rationale for European university research funding: Are there negative unintended consequences? J Econ Issues 35(3):607–632. Google Scholar
  37. Griliches Z (1990) Patent statistics as economic indicators: A survey. J Econ Lit 28(4):1661–1707. Google Scholar
  38. Henderson RM, Clark KB (1990) Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Adm Sci Q 35(1):9–30. Google Scholar
  39. Henderson R, Jaffe AB, Trajtenberg M (1998) Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. Rev Econ Stat 80(1):119–127. Google Scholar
  40. Higgins MJ, Stephan PE, Thursby JG (2011) Conveying quality and value in emerging industries: Star scientists and the role of signals in biotechnology. Res Policy 40(4):605–617. Google Scholar
  41. Jaffe AB (1989) Real effects of academic research. Am Econ Rev 79(5):957–970Google Scholar
  42. Klepper S (1997) Industry life cycles. Ind Corp Change 6(1):145–182. Google Scholar
  43. Koalitionsvertrag (2018) Koalitionsvertrag zwischen CDU, CSU und SPD. Ein neuer Aufbruch für Europa Eine neue Dynamik für Deutschland Ein neuer Zusammenhalt für unser Land, 12.03., BerlinGoogle Scholar
  44. Kosfeld R, Werner A (2012) Deutsche Arbeitsmarktregionen – Neuabgrenzung nach den Kreisgebietsreformen 2007–2011. Raumforsch Raumordn 70(1):49–64. Google Scholar
  45. March JG (1991) Exploration and exploitation in organizational learning. Organ Sci 2(1):71–87. Google Scholar
  46. Mazzucato M (2015) The entrepreneurial state: Debunking public vs. private sector myths (Vol. 1)Google Scholar
  47. Menzel M‑P, Fornahl D (2009) Cluster life cycles—Dimensions and rationales of cluster evolution. Ind Corp Change 19(1):205–238. Google Scholar
  48. Metcalfe JS (1995) Technology systems and technology policy in an evolutionary framework. Cambridge J Econ 19(1):25–46. Google Scholar
  49. Miguelez E, Moreno R (2018) Relatedness, external linkages and regional innovation in Europe. Reg Stud 52(5):688–701. Google Scholar
  50. Mowery DC, Nelson RR, Sampat BN, Ziedonis AA (2001) The growth of patenting and licensing by US universities: An assessment of the effects of the Bayh–Dole act of 1980. Res Policy 30(1):99–119. Google Scholar
  51. Nelson RR (1959) The simple economics of basic scientific-research. J Polit Econ 67(3):297–306Google Scholar
  52. Nerkar A (2003) Old is gold? The value of temporal exploration in the creation of new knowledge. Manage Sci 49(2):211–229. Google Scholar
  53. Nooteboom B (2000) Learning by interaction: Absorptive capacity, cognitive distance and governance. J Manag Gov 4:69–92. Google Scholar
  54. Phene A, Fladmoe-Lindquist K, Marsh L (2006) Breakthrough innovations in the U.S. biotechnology industry: The effects of technological space & geographic origin. Strateg Manage J 27:369–388. Google Scholar
  55. Ponds R, van Oort F, Frenken K (2010) Innovation, spillovers and university—Industry collaboration: An extended knowledge production function approach. J Econ Geogr 10(2):231–255. Google Scholar
  56. Raffo J (2017) MATCHIT: Stata module to match two datasets based on similar text patternsGoogle Scholar
  57. Raffo J, Lhuillery S (2009) How to play the “names game”: Patent retrieval comparing different heuristics. Res Policy 38(10):1617–1627. Google Scholar
  58. Rallet A, Torre A (1999) Is geographical proximity necessary in the innovation networks in the era of global economy? GeoJournal 49(4):373–380. Google Scholar
  59. Research Explorer (2018) Research explorer—The German research directory. Accessed 10 Mar 2018Google Scholar
  60. Rizzo U, Barbieri N, Ramaciotti L, Iannantuono D (2018) The division of labour between academia and industry for the generation of radical inventions. J Technol Transf. Google Scholar
  61. Roesler C, Broekel T (2017) The role of universities in a network of subsidized R&D collaboration: The case of the biotechnology-industry in Germany. Rev Reg Res 37(2):135–160. Google Scholar
  62. Rosenberg N, Nelson RR (1994) American universities and technical advance in industry. Res Policy 23(3):323–348. Google Scholar
  63. Rosenkopf L, Nerkar A (2001) Beyond local search: Boundary-spanning, exploration, and impact in the optical disk industry. Strateg Manage J 22(4):287–306. Google Scholar
  64. Salter AJ, Martin BR (2001) The economic benefits of publicly funded basic research: A critical review. Res Policy 30(3):509–532. Google Scholar
  65. Schmoch U (2008) Concept of a technology classification for country comparisons. Final report to the world intellectual property organization (WIPO). Accessed 30 Aug 2018Google Scholar
  66. Schoenmakers W, Duysters G (2010) The technological origins of radical inventions. Res Policy 39(8):1051–1059. Google Scholar
  67. Schumpeter JA (1939) Business cycles. McGraw-Hill, New YorkGoogle Scholar
  68. Singh J, Fleming L (2010) Lone inventors as sources of breakthroughs: Myth or reality? Manage Sci 56(1):41–56. Google Scholar
  69. Singh J (2008) Distributed R&D, cross-regional knowledge integration and quality of innovative output. Res Policy 37(1):77–96. Google Scholar
  70. Sorenson O, Fleming L (2004) Science and the diffusion of knowledge. Res Policy 33(10):1615–1634. Google Scholar
  71. Stifterverband (2016) Wo Unternehmen forschen – Verteilung und VeränderungGoogle Scholar
  72. Stifterverband (2017) ,ɑ:r ən ’di: Zahlenwerk 2017Google Scholar
  73. Strumsky D, Lobo J (2015) Identifying the sources of technological novelty in the process of invention. Res Policy 44(8):1445–1461. Google Scholar
  74. Ter Wal ALJ, Boschma R (2009) Applying social network analysis in economic geography: Framing some key analytic issues. Ann Reg Sci 43(3):739–756. Google Scholar
  75. Trajtenberg M (1990) A penny for your quotes: Patent citations and the value of innovations. Rand J Econ 21(1):172–187. Google Scholar
  76. Tushman ML, Anderson P (1986) Technological discontinuities and organizational environments. Adm Sci Q 31(3):439–465. Google Scholar
  77. Verhoeven D, Bakker J, Veugelers R (2016) Measuring technological novelty with patent-based indicators. Res Policy 45(3):707–723. Google Scholar
  78. Weitzman ML (1998) Recombinant growth. Q J Econ 113(2):331–360Google Scholar
  79. Wirsich A, Kock A, Strumann C, Schultz C (2016) Effects of university—industry collaboration on technological newness of firms. J Prod Innov Manage 33(6):708–725. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Regional and Innovations EconomicsUniversity of BremenBremenGermany

Personalised recommendations