Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach

  • 17 Accesses

Abstract

The present paper adopts the dimensionless depth-averaged continuum model for avalanches to study interactions between an avalanche and obstacle. Three approaches are used to represent the effect of an obstacle on an avalanche. The first is to include the obstacle as the terrain, the second is to exclude the obstacle from the computation domain, and the third is to define the avalanche–obstacle interaction force with a new mathematical expression proposed in this paper. Combined with the three obstacle treatment approaches, we simulate the flow process of an avalanche bypassing different heights of obstacles placed either in the inclined plane or deposit zone. Hydrodynamic model and S–H theory are comparatively studied in the simulation of an avalanche bypassing a high dam in the inclined plane. In the simulation of avalanche striking a low dam in the inclined plane, the first and third obstacle treatment approaches are systematically compared. The effect of the coefficient of friction acting between the side walls and avalanche and the effect of the angle of basal friction are investigated by fixing a cuboid in the deposit zone.

Graphic abstract

Computed deposit configuration (a); computed sequences at four time points represented by different colors (b); grains overtopping a dam as captured adopting the third approach of obstacle treatment (c); the evolution of avalanche depths with different drag coefficients during the flow process at two positions (d)

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhu, C., Huang, Y., Zhan, L.T.: SPH-based simulation of flow process of a landslide at Hongao landfill in China. Nat. Hazards 93, 1113–1126 (2018)

  2. 2.

    Zhan, L.T., Zhang, Z., Chen, Y.M., Chen, R., Zhang, S., Liu, J., Li, A.: The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations. Eng. Geol. 238, 15–26 (2018)

  3. 3.

    Kattel, P., Kafle, J., Fischer, J.T., Mergili, M., Tuladhar, B.M., Pudasaini, S.P.: Interaction of two-phase debris flow with obstacles. Eng. Geol. 242, 197–217 (2018)

  4. 4.

    National Railway Administration of P.R.C.: Code for design on special railway earth structure. TB 10035. China Railway Publishing House, Beijing, China (2018) (in Chinese)

  5. 5.

    Tai, Y.C., Gray, J.M.N.T., Hutter, K., Noelle, S.: Flow of dense avalanches past obstructions. Ann. Glaciol. 32(1), 281–284 (2001). https://doi.org/10.3189/172756401781819166

  6. 6.

    Cui, X., Gray, J.M.N.T., Johannesson, T.: Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. Earth Surf. (2007). https://doi.org/10.1029/2006JF000712

  7. 7.

    Jóhannesson, T., Gauer, P., Issler, D., Lied, K.: The design of avalanche protection dams: recent practical and theoretical developments. European Commission, Directorate-General for Research Publication EUR 23339 (2009). https://doi.org/10.2777/12871

  8. 8.

    Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Numerical simulation of granular flow past simple obstacles using the SPH method. J. Jap. Soc. Civ. Eng. Ser. B1 (Hydr. Eng.) 71, 199–204 (2015)

  9. 9.

    Tai, Y.C., Wang, Y., Gray, J.M.N.T., Hutter, K.: Methods of similitude in granular avalanche flows. In: Hutter K, Wang Y, Beer H (eds.) Advances in cold-regions thermal engineering and sciences lecture notes in physics, pp. 415–428 (1999). https://doi.org/10.1007/BFb0104200

  10. 10.

    Gray, J.M.N.T., Tai, Y.C., Noelle, S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003)

  11. 11.

    Gray, J.M.N.T., Cui, X.: Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech. 579, 113–136 (2007)

  12. 12.

    Hákonardóttir, K.M., Hogg, A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101 (2005)

  13. 13.

    Hauksson, S., Pagliardi, M., Barbolini, M., Jóhannesson, T.: Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol. 49, 54–63 (2007)

  14. 14.

    Naaim-Bouvet, F., Naaim, M., Bacher, M., Heiligenstein, L.: Physical modelling of the interaction between powder avalanches and defence structures. Nat. Hazard Earth Sys. 2, 193–202 (2002)

  15. 15.

    Hákonardóttir, K.M., Hogg, A.J., Batey, J., Woods, A.W.: Flying avalanches. Geophys. Res. Lett. 1, 1 (2003). https://doi.org/10.1029/2003GL018172

  16. 16.

    Faug, T., Gauer, P., Lied, K., Naaim, M.: Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113, F03009 (2008)

  17. 17.

    Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80, 021305 (2009)

  18. 18.

    Viroulet, S., Baker, J.L., Edwards, A.N., Johnson, C.G., Gjaltema, C., Clavel, P., Gray, J.M.M.T.: Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech. 815, 77–116 (2017)

  19. 19.

    Faug, T., Childs, P., Wyburn, E., Einav, I.: Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids 27, 073304 (2015)

  20. 20.

    Levy, A., Sayed, M.: Numerical simulations of the flow of dilute granular materials around obstacles. Powder Technol. 181, 137–148 (2008)

  21. 21.

    Kattel, P., Tuladhar, B.M.: Interaction of Two-phase Debris Flow with Lateral Converging Shear Walls. J. Nepal Math Soci. 1, 40–52 (2018)

  22. 22.

    Chehata, D., Zenit, R., Wassgren, C.R.: Dense granular flow around an immersed cylinder. Phys. Fluids 15, 1622–1631 (2003)

  23. 23.

    Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method. J. Glaciol. 62, 335–347 (2016)

  24. 24.

    Vreman, A.W., Al-Tarazi, M., Kuipers, J.A.M., Van, S.A.M., Bokhove, O.: Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233–269 (2007)

  25. 25.

    Akers, B., Bokhove, O.: Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601 (2008)

  26. 26.

    Chiou, M.C., Wang, Y., Hutter, K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005). https://doi.org/10.1007/s00707-004-0208-9

  27. 27.

    Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I., Wu, W.: DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 6, 119–133 (2011)

  28. 28.

    Juez, C., Caviedes-Voullième, D., Murillo, J., García-Navarro, P.: 2D dry granular free-surface transient flow over complex topography with obstacles part ii: numerical predictions of fluid structures and benchmarking. Comput. Geosci. 73, 142–163 (2014)

  29. 29.

    Cuomo, S., Cascini, L., Pastor, M., Petrosino, S.: Modelling the Propagation of Debris Avalanches in Presence of Obstacles 4th World Landslide Forum, pp. 469–475. Ljubjana, Slovenia (2017)

  30. 30.

    Choi, C.E., Ng, C.W.W., Law, R.P.H., Song, D., Ho, K.K.S.: Computational investigation of baffle configuration on impedance of channelized debris flow. Can. Geotech. J. 52, 182–197 (2014)

  31. 31.

    Bi, Y., He, S., Du, Y.J., Sun, X., Li, X.: Effects of the configuration of a baffle–avalanche wall system on rock avalanches in Tibet Zhangmu: discrete element analysis. B Eng. Geol. Environ. 78, 2267–2282 (2018)

  32. 32.

    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989). https://doi.org/10.1017/S0022112089000340

  33. 33.

    Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 32(4), 610–623 (1995). https://doi.org/10.1139/t95-063

  34. 34.

    Hutter, K.: Avalanche dynamics. In: Hydrology of Disasters, pp 317–394. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-015-8680-1_11

  35. 35.

    Gray, J.M.N.T., Wieland, M., Hutter, K.: Gravity-driven free surface flow of granular avalanches over complex basal topography. R. Soc. Lond. Proc. Ser. A 455, 1841–1874 (1999). https://doi.org/10.1098/rspa.1999.0383

  36. 36.

    Pudasaini, S.P., Hutter, K.: Avalanche Dynamics, pp. 4–16. Springer, Berlin (2007)

  37. 37.

    Takahashi, T.: Debris flow. Balkema, Rotterdam (1991)

  38. 38.

    O’Brien, J.S., Julien, P.Y., Fullerton, W.T.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119, 244–261 (1993)

  39. 39.

    Iverson, R.M., Reid, M.E., LaHusen, R.G.: Debris-flow mobilization from landslides. Annu. Rev. Earth Plant. Sc. 25, 85–138 (1997)

  40. 40.

    Iverson, R.M., Denlinger, R.P.: Flow of variably fluidised granular masses across three-dimensional terrain: 1 Coulomb mixture theory. J. Geophys. Res.-Sol. Ear. 106, 537–552 (2001)

  41. 41.

    Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res.-Earth Sur. 117, F03010 (2012)

  42. 42.

    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A. 363, 1573–1601 (2005)

  43. 43.

    Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Diaz, M.C., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008)

  44. 44.

    Cui, X., Gray, J.M.N.T.: Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech. 720, 314–337 (2013)

  45. 45.

    Hutter, K., Savage, S.B., Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane: part I theory. Acta Mech. 100, 37–68 (1993). https://doi.org/10.1007/BF01176861

  46. 46.

    Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

  47. 47.

    Buchholz, V., Pöschel, T.: Interaction of a granular stream with an obstacle. Granul. Matter 1, 33–41 (1998)

  48. 48.

    Zenit, R., Karion, A.: Granular flow around a cylinder. In: Proceedings of the 2000 AIChE Annual Fall Meeting, Los Angeles, CA (2000)

  49. 49.

    Takehara, Y., Sachika, F., Ko, O.: High-velocity drag friction in dense granular media. Europhys. Lett. 924, 44003 (2010)

  50. 50.

    Takada, S., Hayakawa, H.: Drag law of two-dimensional granular fluids. J. Eng. Mech. 1431, C4016004 (2016)

  51. 51.

    Salm, B., Burkard, A., Gubler, H.: Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen (Avalanche calculations: a practical method with examples). Eidgen. Inst. für Schnee und Lawinenforschung (1990) (in German)

  52. 52.

    Pazwash, H., Robertson, J.M.: Forces on bodies in Bingham fluids. J. Hydraul. Res. 131, 35–55 (1975)

  53. 53.

    Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73 (1955) (in German)

  54. 54.

    Davis, S.F.: TVD finite difference schemes and artificial viscosity. Report No 84-20, Institute for computer application in science and engineering, NASA Langley Research Center, Hampton (1984)

  55. 55.

    Liang, D., Falconer, R.A., Lin, B.: Comparison between TVD-MacCormack and ADI-type solvers of the shallow water equations. Adv. Water Resource 29, 1833–1845 (2006)

  56. 56.

    Liang, D., Lin, B., Falconer, R.A.: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme. Int. J. Num. Meth. Fluids 53, 811–826 (2007)

  57. 57.

    Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11, 209–220 (2009)

  58. 58.

    Pfeiff, C.F., Hopfinger, E.J.: Drag on cylinders moving through suspensions with high solid concentration. Physico. Chem. Hydrodyn. 7, 101–109 (1986)

  59. 59.

    Hákonardóttir, K.M., Hogg, A.J., Batey, J., Woods, A.W.: Flying avalanches. Geophys. Res. Lett. 30, 2191 (2003)

Download references

Acknowledgements

The research is funded by the National Key Research Development Program of China (Grant No. 2017YFC0404802), the National Natural Science Foundation of China (NSFC) under Grant No. 41790434, and the Key Research and Development Program of China Railway (Grant No. K2019G033).

Author information

FJ: Conceptualization, Software, Writing-Original draft preparation, Methodology; JY: Supervision, Funding Acquisition; CH: Writing—Review & Editing, Visualization, Investigation; ZW: Supervision, Project Administration.

Correspondence to Chengyu Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Jie, Y., Hong, C. et al. Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach. Granular Matter 22, 31 (2020). https://doi.org/10.1007/s10035-020-0995-2

Download citation

Keywords

  • Avalanche
  • Obstacle
  • Interaction
  • Continuum model
  • SH theory