Granular Matter

, 21:111 | Cite as

Segregation of granular materials in a pulsating pumping regime

  • Martin A. HausteinEmail author
  • Ge Zhang
  • Rüdiger Schwarze
Original Paper


The segregation of particles in a granular material is a well known effect of high importance in many industries. Concentrated suspensions like concrete are strongly influenced by the behavior of the coarse aggregates. In these suspensions, the segregation also occurs, especially during the transport of the material through pipes. Typically, concrete is pumped by using double piston pumps leading to a pulsating pumping regime in contrast to a linear (continuous) pumping. This paper shows the behavior of particles during the pulsating pumping regime and the migration in the tube axis. Discrete element simulations of dry, bidisperse materials were carried out to show the influence of material parameters and the segregation behavior. Detailed understanding of the dry material behavior is of great importance for the interpretation of characteristic phenomena, which can be also found in concentrated suspensions, like the formation of a lubrication layer during the concrete pumping.


Discrete element method Particle segregation Pumping Concrete Micro–macro transition 



Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387065607, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 387065607.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Secrieru, E., Khodor, J., Schröfl, C., Mechtcherine, V.: Formation of lubricating layer and flow type during pumping of cement-based materials. Constr. Build. Mater. 178, 507 (2018)CrossRefGoogle Scholar
  2. 2.
    Feys, D., Khayat, K.H.: Particle migration during concrete rheometry: How bad is it? Mater. Struct. 50(2), 129 (2017)CrossRefGoogle Scholar
  3. 3.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  4. 4.
    Owen, P.J., Cleary, P.W.: Prediction of screw conveyor performance using the discrete element method (DEM). Powder Technol. 193(3), 274 (2009)CrossRefGoogle Scholar
  5. 5.
    Binns, T.: Pumped concrete. In: Newman, J., Choo, B.S. (eds.) Advanced Concrete Technology, pp. 1–33. Butterworth-Heinemann, Oxford (2003)Google Scholar
  6. 6.
    Le, H.D., Kadri, E.H., Aggoun, S., Vierendeels, J., Troch, P., Schutter, G.D.: Effect of lubrication layer on velocity profile of concrete in a pumping pipe. Mater. Struct. 48(12), 3991 (2015)CrossRefGoogle Scholar
  7. 7.
    Snook, B., Butler, J.E., Guazzelli, E.: Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow. J. Fluid Mech. 786, 128 (2016)CrossRefADSGoogle Scholar
  8. 8.
    Gray, J.M.N.T.: Particle segregation in dense granular flows. Ann. Rev. Fluid Mech. 50(1), 407 (2018)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Thornton, A.R., Gray, J.M.N.T., Hogg, A.J.: A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550, 1 (2006)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Brone, D., Muzzio, F.J.: Size segregation in vibrated granular systems: a reversible process. Phys. Rev. E 56(1), 1059 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: size separation of granular particles. Nature 414(6861), 270 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Shinbrot, T.: Granular materials: the brazil nut effect in reverse. Nature 429(6990), 352 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Clément, E., Rajchenbach, J., Duran, J.: Mixing of a granular material in a bidimensional rotating drum. EPL 30(1), 7 (1995)CrossRefADSGoogle Scholar
  15. 15.
    Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol. 253, 256 (2014)CrossRefGoogle Scholar
  16. 16.
    Chand, R., Khaskheli, M.A., Qadir, A., Ge, B., Shi, Q.: Discrete particle simulation of radial segregation in horizontally rotating drum: effects of drum-length and non-rotating end-plates. Phys. A Stat. Mech. Appl. 391(20), 4590 (2012)CrossRefGoogle Scholar
  17. 17.
    Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311 (1988)CrossRefADSGoogle Scholar
  18. 18.
    McCarthy, J.: Turning the corner in segregation. Powder Technol. 192(2), 137 (2009)CrossRefGoogle Scholar
  19. 19.
    Scott, A.M., Bridgwater, J.: Interparticle percolation: a fundamental solids mixing mechanism. Ind. Eng. Chem. Fund. 14(1), 22 (1975)CrossRefGoogle Scholar
  20. 20.
    Golick, L.A., Daniels, K.E.: Mixing and segregation rates in sheared granular materials. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 80(4 Pt 1), 042301 (2009)CrossRefADSGoogle Scholar
  21. 21.
    van der Vaart, K., Gajjar, P., Epely-Chauvin, G., Andreini, N., Gray, J.M.N.T., Ancey, C.: Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114(23), 238001 (2015)CrossRefADSGoogle Scholar
  22. 22.
    Fan, Y., Hill, K.M.: Shear-induced segregation of particles by material density. Phys. Rev. E 92(2), 022211 (2015)CrossRefADSGoogle Scholar
  23. 23.
    Gillemot, K.A., Somfai, E., Börzsönyi, T.: Shear-driven segregation of dry granular materials with different friction coefficients. Soft Matter. 13(2), 415 (2017)CrossRefADSGoogle Scholar
  24. 24.
    Fan, Y., Hill, K.: Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13(9), 095009 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Kwon, S.H., Jang, K.P., Kim, J.H., Shah, S.P.: State of the art on prediction of concrete pumping. Int. J. Concr. Struct. Mater. 10(3), 75 (2016)CrossRefGoogle Scholar
  26. 26.
    De Schutter, G., Feys, D.: Pumping of fresh concrete: insights and challenges. RILEM Tech. Lett. 1, 76 (2016)CrossRefGoogle Scholar
  27. 27.
    Choi, M.S., Kim, Y.J., Kwon, S.H.: Prediction on pipe flow of pumped concrete based on shear-induced particle migration. Cem. Concr. Res. 52, 216 (2013)CrossRefGoogle Scholar
  28. 28.
    Jo, S.D., Park, C.K., Jeong, J.H., Lee, S.H., Kwon, S.H.: A computational approach to estimating a lubricating layer in concrete pumping CMC. Comput. Mater. Contin. 27(3), 189 (2011)Google Scholar
  29. 29.
    Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R.: A constitutive equation for concentrated suspensions that accounts for shearinduced particle migration. Phys. Fluids A Fluid Dyn. 4(1), 30 (1992)CrossRefADSGoogle Scholar
  30. 30.
    Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525 (2004)CrossRefGoogle Scholar
  31. 31.
    Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Thornton, A., Weinhart, T., Luding, S., Bokhove, O.: Modeling of particle size segregation: calibration using the discrete element method. Int. J. Mod. Phys. C 23(08), 1240014 (2012)CrossRefADSGoogle Scholar
  33. 33.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14(2), 289 (2012)CrossRefGoogle Scholar
  34. 34.
    Luding, S.: Micromacro transition for anisotropic, frictional granular packings. Int. J. Solids Struct. 41(21), 5821 (2004)CrossRefGoogle Scholar
  35. 35.
    Luding, S.: Introduction to discrete element methods. Basic of contact force models and how to perform the micro-macro transition to continuum theory. Revue européenne de génie civil 12(7–8), 785 (2008)CrossRefGoogle Scholar
  36. 36.
    Schwarze, R., Gladkyy, A., Uhlig, F., Luding, S.: Rheology of weakly wetted granular materials: a comparison of experimental and numerical data. Granul. Matter 15(4), 455 (2013)CrossRefGoogle Scholar
  37. 37.
    Dai, W., Reimann, J., Hanaor, D., Ferrero, C., Gan, Y.: Modes of wall induced granular crystallisation in vibrational packing. Granul. Matter 21(2), 26 (2019)CrossRefGoogle Scholar
  38. 38.
    Luding, S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26(1), 33 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Martin A. Haustein
    • 1
    Email author
  • Ge Zhang
    • 2
  • Rüdiger Schwarze
    • 1
  1. 1.Institute of Mechanics and Fluid DynamicsTU Bergakademie FreibergFreibergGermany
  2. 2.Institute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China

Personalised recommendations