Advertisement

Granular Matter

, 21:98 | Cite as

Assessment of particle rearrangement and anisotropy in high-load tableting with a DEM-based elasto-plastic cohesive model

  • Ramon CabiscolEmail author
  • Jan Henrik Finke
  • Arno Kwade
Original Paper
  • 121 Downloads
Part of the following topical collections:
  1. Multiscale analysis of particulate micro- and macro-processes

Abstract

The goal of the present study is to assess the extent of particle rearrangement and the degree of anisotropy for uni-axial compaction of microcrystalline cellulose (MCC) by Discrete Element method simulations. The elasto-plastic cohesive hysteretic Edinburgh contact model is hereby considered. First, a calibration strategy for all required collisional, frictional, or cohesion input parameters is presented. A dual approach combining direct determination tests (e.g., nano-indentation or inverse gas chromatography) and indirect fitting tests (e.g., tumbling drum test) provides the final set of property values. Second, the uni-axial compaction of MCC for a range of target compaction pressures and different primary particle dispersities (mono- and polydisperse) is conducted. The anisotropic behavior of compaction is analyzed by computing averaged quantities such as the deviatoric term and the maximum difference between characteristic roots of the fabric tensor. The results depict a remaining degree of anisotropy after compaction, depending on the maximum compaction pressure and particle dispersity, which does not fully recover after powder decompression.

Keywords

DEM Tableting Anisotropy MCC 

Notes

Acknowledgements

The economic support of the European Community under the Marie Skłodowska-Curie Initial Training Network FP7 (ITN607453) T-MAPPP is gratefully acknowledged. We would like to thank the collaboration of DFE Pharma in supplying Pharmacel® 102 for this study. At the same time, the authors would also like to thank Dr. Xizhong Chen for his contribution to the coarse graining averaging analysis, Ms. Stephanie Michel for the realization of the nano-indentation tests, Mr. Paul Fabio Prziwara for executing the iGC tests, and Mr. Matthäus Barasinski for his contribution to the implementation of the fabric tensor formulation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Qiu, Y., Chen, Y., Zhang, G.G.Z.: Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Elsevier, Amsterdam (2009)Google Scholar
  2. 2.
    Hiestand, E., Wells, J., Peot, C., Ochs, J.: Physical processes of tableting. J. Pharm. Sci. 66(4), 510–519 (1977)Google Scholar
  3. 3.
    Hiestand, E.N.: Mechanical properties of compacts and particles that control tableting success. J. Pharm. Sci. 86(9), 985–990 (1997)Google Scholar
  4. 4.
    Liu, J., De Lo, D.P.: Particle rearrangement during powder compaction. Metall. Mater. Trans. A 32(12), 3117–3124 (2001).  https://doi.org/10.1007/s11661-001-0186-7 CrossRefGoogle Scholar
  5. 5.
    Ilić, I., Govedarica, B., Šibanc, R., Dreu, R., Srčič, S.: Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int. J. Pharm. 446(1), 6–15 (2013).  https://doi.org/10.1016/j.ijpharm.2013.02.001 CrossRefGoogle Scholar
  6. 6.
    Bogda, M.: Tablet compression: machine theory, design, and process troubleshooting. In: Swarbrick, J. (ed.) Encyclopedia of Pharmaceutical Technology, vol. 3614. Informa Healthcare, New York (2007)Google Scholar
  7. 7.
    Führer, C., Karehill, P.-G., Ragnarsson, G., Müller, F., Leuenberger, H., Leu, R., Bonny, J.-D., Davies, P.N., Newton, J.M., Armstrong, N.A.: Pharmaceutical powder compaction technology, 1–15 (1996)Google Scholar
  8. 8.
    Brewin, P.R., Coube, O., Doremus, P., Tweed, J.H.: Modelling of Powder Die Compaction. Springer, Berlin (2007)Google Scholar
  9. 9.
    Shima, S., Kotera, H., Yuuki, U.: A study of constitutive behaviour of powder assembly by particulate modeling. J. Soc. Mater. Sci. Jpn. 44(504Appendix), 163–168 (1995)Google Scholar
  10. 10.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)Google Scholar
  11. 11.
    Wu, C.-Y., Cocks, A.C., Gillia, O.T.: Experimental and numerical investigations of die filling and powder transfer. Adv. Powder. Metall. Part. Mater. 4, 4–258 (2002)Google Scholar
  12. 12.
    Cocks, A.: Inelastic deformation of porous materials. J. Mech. Phys. Solids 37(6), 693–715 (1989)zbMATHADSGoogle Scholar
  13. 13.
    Martin, C.L., Bouvard, D., Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51(4), 667–693 (2003).  https://doi.org/10.1016/s0022-5096(02)00101-1 CrossRefzbMATHADSGoogle Scholar
  14. 14.
    Fleck, N.: On the cold compaction of powders. J. Mech. Phys. Solids 43(9), 1409–1431 (1995)zbMATHADSGoogle Scholar
  15. 15.
    Munjiza, A.A.: The combined finite-discrete element method. Wiley, Hoboken (2004)zbMATHGoogle Scholar
  16. 16.
    Frenning, G.: Analysis of pharmaceutical powder compaction using multiplicative hyperelasto-plastic theory. Powder Technol. 172(2), 103–112 (2007).  https://doi.org/10.1016/j.powtec.2006.11.001 CrossRefGoogle Scholar
  17. 17.
    Harthong, B., Jérier, J.-F., Dorémus, P., Imbault, D., Donzé, F.-V.: Modeling of high-density compaction of granular materials by the discrete element method. Int. J. Solids Struct. 46(18), 3357–3364 (2009)zbMATHGoogle Scholar
  18. 18.
    Storåkers, B., Biwa, S., Larsson, P.-L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34(24), 3061–3083 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Thornton, C., Ning, Z.: A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99(2), 154–162 (1998)Google Scholar
  20. 20.
    Samimi, A., Hassanpour, A., Ghadiri, M.: Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chem. Eng. Sci. 60(14), 3993–4004 (2005)Google Scholar
  21. 21.
    Sheng, Y., Lawrence, C., Briscoe, B., Thornton, C.: Numerical studies of uniaxial powder compaction process by 3D DEM. Eng. Comput. 21(2/3/4), 304–317 (2004)zbMATHGoogle Scholar
  22. 22.
    Cabiscol, R., Finke, J., Zetzener, H., Kwade, A.: Characterization of mechanical property distributions on tablet surfaces. Pharmaceutics 10(4), 184 (2018)Google Scholar
  23. 23.
    Persson, A.-S., Frenning, G.: An experimental evaluation of the accuracy to simulate granule bed compression using the discrete element method. Powder Technol. 219, 249–256 (2012).  https://doi.org/10.1016/j.powtec.2011.12.054 CrossRefGoogle Scholar
  24. 24.
    Thakur, S.C., Morrissey, J.P., Sun, J., Chen, J., Ooi, J.Y.: Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter 16(3), 383–400 (2014)Google Scholar
  25. 25.
    Luding, S.: Introduction to discrete element methods. Basics of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12(7–8), 785–826 (2008)Google Scholar
  26. 26.
    Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)zbMATHGoogle Scholar
  27. 27.
    Johnstone, M.W.: Calibration of DEM Models for Granular Materials Using Bulk Physical Tests. The University of Edinburgh, Edinburgh (2010)Google Scholar
  28. 28.
    Grima, A.P., Wypych, P.W.: Development and validation of calibration methods for discrete element modelling. Granul. Matter 13(2), 127–132 (2010).  https://doi.org/10.1007/s10035-010-0197-4 CrossRefGoogle Scholar
  29. 29.
    Thakur, S.C., Ahmadian, H., Sun, J., Ooi, J.Y.: An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12, 2–12 (2014).  https://doi.org/10.1016/j.partic.2013.06.009 CrossRefGoogle Scholar
  30. 30.
    Sinka, I., Burch, S., Tweed, J., Cunningham, J.: Measurement of density variations in tablets using X-ray computed tomography. Int. J. Pharm. 271(1), 215–224 (2004)Google Scholar
  31. 31.
    Nyström, C., Alex, W., Malmqvist, K.: A new approach to tensile strength measurement of tablets. Acta Pharm. Suec. 14(3), 317 (1977)Google Scholar
  32. 32.
    Galen, S., Zavaliangos, A.: Strength anisotropy in cold compacted ductile and brittle powders. Acta Mater. 53(18), 4801–4815 (2005).  https://doi.org/10.1016/j.actamat.2005.06.023 CrossRefGoogle Scholar
  33. 33.
    Lannutti, J.J.: Characterization and control of compact microstructure. MRS Bull. 22(12), 38–44 (1997)Google Scholar
  34. 34.
    Ittershagen, T., Kwade, A.: Measurement of anisotropic consolidation behavior. Part. Sci. Technol. 29(1), 79–88 (2011)Google Scholar
  35. 35.
    Voyiadjis, G.Z., Dorgan, R.J.: Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior. Int. J. Plast. 23(10), 1826–1859 (2007).  https://doi.org/10.1016/j.ijplas.2007.03.012 CrossRefzbMATHGoogle Scholar
  36. 36.
    Kabel, J., Van Rietbergen, B., Odgaard, A., Huiskes, R.: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25(4), 481–486 (1999)Google Scholar
  37. 37.
    Shertzer, H.: Fabric Tensors and Effective Properties of Granular Materials with Application to Snow. Montana State University, Bozeman (2011)Google Scholar
  38. 38.
    Gonzalez, M., Poorsolhjouy, P., Thomas, A., Liu, J., Balakrishnan, K.: Statistical characterization of microstructure evolution during compaction of granular systems composed of spheres with hardening plastic behavior. Mech. Res. Commun. 92, 131–136 (2018)Google Scholar
  39. 39.
    Loidolt, P., Ulz, M.H., Khinast, J.: Prediction of the anisotropic mechanical properties of compacted powders. Powder Technol. 345, 589–600 (2019)Google Scholar
  40. 40.
    Thakur, S.C.: Mesoscopic Discrete Element Modelling of Cohesive Powders for Bulk Handling Applications. University of Edinburgh, Edinburgh (2014)Google Scholar
  41. 41.
    Röck, M., Schwedes, J.: Investigations on the caking behaviour of bulk solids—macroscale experiments. Powder Technol. 157(1), 121–127 (2005)Google Scholar
  42. 42.
    Bell, T., Catalano, E., Zhong, Z., Ooi, J., Rotter, J.: Evaluation of the Edinburgh powder tester. In: Proceedings of the PARTEC 2007, pp. 2–6Google Scholar
  43. 43.
    Tomas, J.: Adhesion of ultrafine particles—a micromechanical approach. Chem. Eng. Sci. 62(7), 1997–2010 (2007)Google Scholar
  44. 44.
    Thornton, C., Ning, Z.: A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99, 9 (1998)Google Scholar
  45. 45.
    Morrissey, J.P., Thakur, S.C., Ooi, J.Y.: EDEM contact model: adhesive elasto-plastic model. Granul. Matter 16(3), 383–400 (2014)Google Scholar
  46. 46.
    MatWeb: MatWeb Material Property Data-Overview of Materials for Medium Alloy Steel. http://www.matweb.com/search/DataSheet.aspx?MatGUID=f7666326ceb3482f87a9f41ace1d1fb0 (1996–2018). Accessed 5 March 2018
  47. 47.
    Roberts, R.J., Rowe, R.C., York, P.: The Poisson’s ratio of microcrystalline cellulose. Int. J. Pharm. 105(2), 177–180 (1994).  https://doi.org/10.1016/0378-5173(94)90463-4 CrossRefGoogle Scholar
  48. 48.
    Gere, J.M., Timoshenko, S.P.: Mechanics of Materials. PWS Pub Co., Boston (1997)Google Scholar
  49. 49.
    Levin, B., DuPont, J., Marder, A.: Indentation analysis of sub-surface deformation in ductile materials after solid particle erosion. Mater. Sci. Eng. A 283(1), 203–210 (2000)Google Scholar
  50. 50.
    Schilde, C., Westphal, B., Kwade, A.: Effect of the primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates. J. Nanopart. Res. 14(3), 745 (2012)ADSGoogle Scholar
  51. 51.
    Hesselbach, J., Kockmann, A., Lüke, S., Overbeck, A., Garnweitner, G., Schilde, C., Kwade, A.: Enhancement of the mechanical properties of nanoparticulate thin coatings via surface modification and cross-linking additive. Chem. Eng. Technol. 40(9), 1561–1568 (2017)Google Scholar
  52. 52.
    Grimsey, I.M., Feeley, J.C., York, P.: Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J. Pharm. Sci. 91(2), 13 (2001)Google Scholar
  53. 53.
    Mohammadi-Jam, S., Waters, K.: Inverse gas chromatography applications: a review. Adv. Colloid Interface Sci. 212, 21–44 (2014)Google Scholar
  54. 54.
    Shi, B., Wang, Y., Jia, L.: Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. J. Chromatogr. A 1218(6), 860–862 (2011).  https://doi.org/10.1016/j.chroma.2010.12.050 CrossRefGoogle Scholar
  55. 55.
    Donnet, J., Park, S., Balard, H.: Evaluation of specific interactions of solid surfaces by inverse gas chromatography. Chromatographia 31(9–10), 434–440 (1991)Google Scholar
  56. 56.
    Prziwara, P., Breitung-Faes, S., Kwade, A.: Impact of grinding aids on dry grinding performance, bulk properties and surface energy. Adv. Powder Technol. 29(2), 416–425 (2018)Google Scholar
  57. 57.
    Jenike, A.W.: Storage and flow of solids. Bulletin 123, Utah Engineering Experiment Station, University of Utah (1964)Google Scholar
  58. 58.
    Shi, H., Mohanty, R., Chakravarty, S., Cabiscol, R., Morgeneyer, M., Zetzener, H., Ooi, J.Y., Kwade, A., Luding, S., Magnanimo, V.: Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 35, 226–250 (2018)Google Scholar
  59. 59.
    Schulze, D.: Powders and Bulk Solids. Behavior, Characterization Storage and Flow. Springer, Berlin (2008)Google Scholar
  60. 60.
    Weuster, A., Strege, S., Brendel, L., Zetzener, H., Wolf, D.E., Kwade, A.: Shear flow of cohesive powders with contact crystallization: experiment, model and calibration. Granul. Matter 17(2), 271–286 (2015).  https://doi.org/10.1007/s10035-015-0555-3 CrossRefGoogle Scholar
  61. 61.
    Arfsten, J., Leupold, S., Bradtmöller, C., Kampen, I., Kwade, A.: Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Colloids Surf. B 79(1), 284–290 (2010)Google Scholar
  62. 62.
    Emeriault, F., Chang, C.: Interparticle forces and displacements in granular materials. Comput. Geotech. 20(3–4), 223–244 (1997)Google Scholar
  63. 63.
    Rumpf, H.: Grundlagen und methoden des granulierens. Chem. Ing. Tec. 30(3), 144–158 (1958)Google Scholar
  64. 64.
    Tsoungui, O., Vallet, D., Charmet, J.-C., Roux, S.: “Partial pressures” supported by granulometric classes in polydisperse granular media. Phys. Rev. E 57(4), 4458 (1998)zbMATHADSGoogle Scholar
  65. 65.
    Quintanilla, M.A., Castellanos, A., Valverde, J.M.: Correlation between bulk stresses and interparticle contact forces in fine powders. Phys. Rev. E 64(3 Pt 1), 031301 (2001).  https://doi.org/10.1103/physreve.64.031301 CrossRefADSGoogle Scholar
  66. 66.
    Göncü, F., Durán, O., Luding, S.: Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. Comptes Rendus Mécanique 338(10–11), 570–586 (2010)zbMATHADSGoogle Scholar
  67. 67.
    Shen, C.-K., O’Sullivan, C., Jardine, R.: A micromechanical investigation of drained simple shear tests. In: Deformation Characteristics of Geomaterials: Proceedings of the 5th International Symposium on Deformation Characteristics of Geomaterials, IS-Seoul 2011, 1–3 September 2011, Seoul, Korea 2011, p. 314. IOS PressGoogle Scholar
  68. 68.
    Babic, M.: Average balance equations for granular materials. Int. J. Eng. Sci. 35(5), 523–548 (1997)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12(3), 239–252 (2010)zbMATHGoogle Scholar
  70. 70.
    Taylor, L., Papadopoulos, D., Dunn, P., Bentham, A., Mitchell, J., Snowden, M.: Mechanical characterisation of powders using nanoindentation. Powder Technol. 143, 179–185 (2004)Google Scholar
  71. 71.
    Gao, H., Huang, Y., Nix, W., Hutchinson, J.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)MathSciNetzbMATHADSGoogle Scholar
  72. 72.
    Olusanmi, D., Roberts, K., Ghadiri, M., Ding, Y.: The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy. Int. J. Pharm. 411(1), 49–63 (2011)Google Scholar
  73. 73.
    Vehovec, T., Gartner, A., Planinšek, O., Obreza, A.: Influence of different types of commercially available microcrystalline cellulose on degradation of perindopril erbumine and enalapril maleate in binary mixtures/Vpliv različnih tipov komercialno dostopne mikrokristalne celuloze na razpad erbuminijevega perindoprilata in enalaprilijevega maleata v binarnih zmeseh. Acta Pharm. 62(4), 515–528 (2012)Google Scholar
  74. 74.
    Steele, D.F., Moreton, R.C., Staniforth, J.N., Young, P.M., Tobyn, M.J., Edge, S.: Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J. 10(3), 494–503 (2008)Google Scholar
  75. 75.
    Taboada, A., Estrada, N., Radjai, F.: Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett. 97(9), 098302 (2006)ADSGoogle Scholar
  76. 76.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)Google Scholar
  77. 77.
    Li, J., Wu, Y.: Lubricants in pharmaceutical solid dosage forms. Lubricants 2(1), 21–43 (2014)MathSciNetGoogle Scholar
  78. 78.
    Yohannes, B., Gonzalez, M., Abebe, A., Sprockel, O., Nikfar, F., Kang, S., Cuitino, A.M.: The role of fine particles on compaction and tensile strength of pharmaceutical powders. Powder Technol. 274, 372–378 (2015).  https://doi.org/10.1016/j.powtec.2015.01.035 CrossRefGoogle Scholar
  79. 79.
    Remond, S.: DEM simulation of small particles clogging in the packing of large beads. Phys. A 389(21), 4485–4496 (2010)Google Scholar
  80. 80.
    Edge, S., Steele, D.F., Chen, A., Tobyn, M.J., Staniforth, J.N.: The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm. 200(1), 67–72 (2000)Google Scholar
  81. 81.
    Imole, O.I., Wojtkowski, M., Magnanimo, V., Luding, S.: Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Phys. Rev. E 89(4), 042210 (2014)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Particle Technology (iPAT)Technische Universität Braunschweig (TUBS)BraunschweigGermany
  2. 2.Center of Pharmaceutical Engineering (PVZ)Technische Universität Braunschweig (TUBS)BraunschweigGermany

Personalised recommendations