Advertisement

Granular Matter

, 21:96 | Cite as

Numerical simulation of column charge explosive in rock masses with particle flow code

  • Junxiong Yang
  • Chong ShiEmail author
  • Wenkun Yang
  • Xiao Chen
  • Yiping Zhang
Original Paper
  • 57 Downloads

Abstract

The detonation of a column charge and the damage process in a rock mass are simulated in this study by the particle flow code method. The expansion loading method and the dynamic boundary treatment method are established according to the discrete element mechanism. Mechanical parameters are calibrated on the basis of the Starfield superposition principle and the dynamic compensation method. Dynamic stiffness and microscopic parameters are used for numerical simulations. Numerical test results are consistent with lab experimental test results. The velocity attenuation law is compared with that of theoretical results, and the blasting crater action index is compared with that of field test results, to verify the rationality of the numerical explosion model of the column charge. The mechanism of the rock breaking process under column charge explosion is analyzed. Stress wave propagation, detonation wave propagation, and crack extension are investigated. The stress wave gradient law is obtained, and the effects of blasting rock breaking, crack extension, and explosion effect outside the blasting crater area are determined with different initiation modes. The research method can explain the blasting stress wave propagation law and describe the dynamical failure process in rock masses. This study can provide a reliable numerical analysis method for follow-up blasting research and offer practical guidance on engineering blasting.

Keywords

Particle flow code Explosive stress wave Blasting crater Crack Detonation 

Notes

Acknowledgements

The work presented in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 51679071), the National Basic Research Program of China (973 Program) (Grant No. 2015CB057903) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20171434).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu, K., Li, X., Li, X., Yao, Z., Shu, Z., Yuan, M.: Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges. J. Cent. South Univ. 23(11), 2951–2957 (2016).  https://doi.org/10.1007/s11771-016-3359-7 CrossRefGoogle Scholar
  2. 2.
    Chen, S., Hu, S., Zhang, Z., Wu, J.: Propagation characteristics of vibration waves induced in surrounding rock by tunneling blasting. J. Mt. Sci. 14(12), 2620–2630 (2017).  https://doi.org/10.1007/s11629-017-4364-5 CrossRefGoogle Scholar
  3. 3.
    Chen, L., Wang, C.P., Liu, J.F., Liu, J., Wang, J., Jia, Y., Shao, J.F.: Damage and plastic deformation modeling of Beishan granite under compressive stress conditions. Rock Mech. Rock Eng. 48(4), 1623–1633 (2015).  https://doi.org/10.1007/s00603-014-0650-5 ADSCrossRefGoogle Scholar
  4. 4.
    Mukherjee, M., Nguyen, G.D., Mir, A., Bui, H.H., Shen, L., El-Zein, A., Maggi, F.: Capturing pressure- and rate-dependent behaviour of rocks using a new damage-plasticity model. Int. J. Impact Eng. 110, 208–218 (2017).  https://doi.org/10.1016/j.ijimpeng.2017.01.006 CrossRefGoogle Scholar
  5. 5.
    Yilmaz, O., Unlu, T.: Three dimensional numerical rock damage analysis under blasting load. Tunn. Undergr. Space Technol. 38, 266–278 (2013).  https://doi.org/10.1016/j.tust.2013.07.007 CrossRefGoogle Scholar
  6. 6.
    Wang, Z.L., Konietzky, H.: Modelling of blast-induced fractures in jointed rock masses. Eng. Fract. Mech. 76(12), 1945–1955 (2009).  https://doi.org/10.1016/j.engfracmech.2009.05.004 CrossRefGoogle Scholar
  7. 7.
    Yan, P., Zhou, W., Lu, W., Chen, M., Zhou, C.: Simulation of bench blasting considering fragmentation size distribution. Int. J. Impact Eng. 90, 132–145 (2016).  https://doi.org/10.1016/j.ijimpeng.2015.11.015 CrossRefGoogle Scholar
  8. 8.
    Zhao, J.J., Zhang, Y., Ranjith, P.G.: Numerical simulation of blasting-induced fracture expansion in coal masses. Int. J. Rock Mech. Min. Sci. 100, 28–39 (2017).  https://doi.org/10.1016/j.ijrmms.2017.10.015 CrossRefGoogle Scholar
  9. 9.
    Zhao, T., Crosta, G.B., Dattola, G., Utili, S.: Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: insights from discrete element analyses. J. Geophys. Res. Solid Earth 123(4), 3250–3269 (2018).  https://doi.org/10.1002/2017jb015210 ADSCrossRefGoogle Scholar
  10. 10.
    Mandal, S.K.: Mathematical model to locate interference of blast waves from multi-hole blasting rounds. Engineering 4(3), 146–154 (2012).  https://doi.org/10.4236/eng.2012.43019 CrossRefGoogle Scholar
  11. 11.
    Blair, D.P.: Blast vibration dependence on charge length, velocity of detonation and layered media. Int. J. Rock Mech. Min. Sci. 65, 29–39 (2014).  https://doi.org/10.1016/j.ijrmms.2013.11.007 CrossRefGoogle Scholar
  12. 12.
    Chen, S., Wu, J., Zhang, Z.: Influence of millisecond time, charge length and detonation velocity on blasting vibration. J. Cent. South Univ. 22(12), 4787–4796 (2015).  https://doi.org/10.1007/s11771-015-3030-8 CrossRefGoogle Scholar
  13. 13.
    Mohammadi, H.R., Mansouri, H., Bahaaddini, M., Jalalifar, H.: Investigation into the effect of fault properties on wave transmission. Int. J. Numer. Anal. Methods Geomech 41(17), 1741–1757 (2017).  https://doi.org/10.1002/nag.2698 CrossRefGoogle Scholar
  14. 14.
    Li, X., Li, Z., Wang, E., Liang, Y., Niu, Y., Li, Q.: Spectra, energy, and fractal characteristics of blast waves. J. Geophys. Eng. 15(1), 81–92 (2018).  https://doi.org/10.1088/1742-2140/aa83cd ADSCrossRefGoogle Scholar
  15. 15.
    Wang, Y., Tonon, F.: Dynamic validation of a discrete element code in modeling rock fragmentation. Int. J. Rock Mech. Min. Sci. 48(4), 535–545 (2011).  https://doi.org/10.1016/j.ijrmms.2011.02.003 CrossRefGoogle Scholar
  16. 16.
    Shen, W.G., Zhao, T., Crosta, G.B., Dai, F.: Analysis of impact-induced rock fragmentation using a discrete element approach. Int. J. Rock Mech. Min. Sci. 98, 33–38 (2017).  https://doi.org/10.1016/j.ijrmms.2017.07.014 CrossRefGoogle Scholar
  17. 17.
    Ning, Y., Yang, J., An, X., Ma, G.: Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput. Geotech. 38(1), 40–49 (2011).  https://doi.org/10.1016/j.compgeo.2010.09.003 CrossRefGoogle Scholar
  18. 18.
    Zhao, T., Crosta, G.B., Utili, S., De Blasio, F.V.: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses. J. Geophys. Res. Earth Surf. 122(3), 678–695 (2017).  https://doi.org/10.1002/2016jf004060 ADSCrossRefGoogle Scholar
  19. 19.
    Jhanwar, J.C.: Theory and practice of air-deck blasting in mines and surface excavations: a review. Geotech. Geol. Eng. 29(5), 651–663 (2011).  https://doi.org/10.1007/s10706-011-9425-x CrossRefGoogle Scholar
  20. 20.
    Yi, C., Sjoberg, J., Johansson, D., Petropoulos, N.: A numerical study of the impact of short delays on rock fragmentation. Int. J. Rock Mech. Min. Sci. 100, 250–254 (2017).  https://doi.org/10.1016/j.ijrmms.2017.10.026 CrossRefGoogle Scholar
  21. 21.
    Far, M.S., Wang, Y.: Probabilistic analysis of crushed zone for rock blasting. Comput. Geotech. 80, 290–300 (2016).  https://doi.org/10.1016/j.compgeo.2016.08.025 CrossRefGoogle Scholar
  22. 22.
    Zhao, T., Crosta, G.B.: On the dynamic fragmentation and lubrication of coseismic landslides. J. Geophys. Res. Solid Earth 123(11), 9914–9932 (2018).  https://doi.org/10.1029/2018jb016378 ADSCrossRefGoogle Scholar
  23. 23.
    Yan, P., Zou, Y.J., Lu, W.B., Hu, Y.G., Leng, Z.D., Zhang, Y.Z., Liu, L., Hu, H.R., Chen, M., Wang, G.H.: Real-time assessment of blasting damage depth based on the induced vibration during excavation of a high rock slope. Geotech. Test. J. (2016).  https://doi.org/10.1520/gtj20150187 CrossRefGoogle Scholar
  24. 24.
    Motoyama, Y., Mikame, S., Nojima, K., Kawahara, M.: Second-order adjoint equation method for parameter identification of rock based on blast waves in tunnel excavation. Eng. Optim. 46(7), 939–963 (2014).  https://doi.org/10.1080/0305215x.2013.806917 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tiwari, R., Chakraborty, T., Matsagar, V.: Dynamic analysis of a twin tunnel in soil subjected to internal blast loading. Indian Geotech. J. 46(4), 369–380 (2016).  https://doi.org/10.1007/s40098-016-0179-5 CrossRefGoogle Scholar
  26. 26.
    Cardu, M., Seccatore, J.: Quantifying the difficulty of tunnelling by drilling and blasting. Tunn. Undergr. Space Technol. 60, 178–182 (2016).  https://doi.org/10.1016/j.tust.2016.08.010 CrossRefGoogle Scholar
  27. 27.
    Yang, J., Lu, W., Chen, M., Yan, P., Zhou, C.: Microseism induced by transient release of in situ stress during deep rock mass excavation by blasting. Rock Mech. Rock Eng. 46(4), 859–875 (2013).  https://doi.org/10.1007/s00603-012-0308-0 ADSCrossRefGoogle Scholar
  28. 28.
    Lazzari, E., Johansson, F., Ivars, D.M., Juncal, A.S.: Advances, current limitations and future requirements for a numerical shear box for rock joints using PFC2D. In: Rock Engineering and Rock Mechanics: Structures in and on Rock Masses, pp. 763–768. CRC Press, Boca Raton (2014) (ISBN: 978-1-138-00149-7; WOS: 000345985300124)CrossRefGoogle Scholar
  29. 29.
    Bahaaddini, M., Hagan, P.C., Mitra, R., Hebblewhite, B.K.: Scale effect on the shear behaviour of rock joints based on a numerical study. Eng. Geol. 181, 212–223 (2014).  https://doi.org/10.1016/j.enggeo.2014.07.018 CrossRefGoogle Scholar
  30. 30.
    Chong, Z., Li, X., Chen, X., Zhang, J., Lu, J.: Numerical investigation into the effect of natural fracture density on hydraulic fracture network propagation. Energies 10(7), 914 (2017).  https://doi.org/10.3390/en10070914 CrossRefGoogle Scholar
  31. 31.
    Zhang, Y., Shao, J., Liu, Z., Shi, C., De Saxcé, G.: Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: a three-dimensional DEM analysis. Acta Geotech. 14(2), 443–460 (2018).  https://doi.org/10.1007/s11440-018-0671-4 ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Liu, Z., Shi, C., Shao, J.: Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach. Rock Mech. Rock Eng. 51(4), 1173–1191 (2018).  https://doi.org/10.1007/s00603-017-1385-x ADSCrossRefGoogle Scholar
  33. 33.
    Starfield, A.M., Pugliese, J.M.: Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 5(1), 65–77 (1968).  https://doi.org/10.1016/0148-9062(68)90023-5 CrossRefGoogle Scholar
  34. 34.
    Itasca Consulting Group: PFC 2D-user manual. Itasca Consulting Group, Minneapolis (1999)Google Scholar
  35. 35.
    Cundall, P.A., Strack, O.: Discussion: a discrete numerical model for granular assemblies. Geotechnique 30(3), 331–336 (1980).  https://doi.org/10.1680/geot.1980.30.3.331 CrossRefGoogle Scholar
  36. 36.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004).  https://doi.org/10.1016/j.ijrmms.2004.09.011 CrossRefGoogle Scholar
  37. 37.
    Holt, R.M., Kjølaas, J., Larsen, I., Li, L., Gotusso Pillitteri, A., Sønstebø, E.F.: Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int. J. Rock Mech. Min. Sci. 42(7), 985–995 (2005).  https://doi.org/10.1016/j.ijrmms.2005.05.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringHohai UniversityNanjingChina
  2. 2.Research Institute of Geotechnical EngineeringHohai UniversityNanjingChina

Personalised recommendations