Advertisement

Granular Matter

, 21:83 | Cite as

Enlightening force chains: a review of photoelasticimetry in granular matter

  • Aghil Abed Zadeh
  • Jonathan BarésEmail author
  • Theodore A. Brzinski
  • Karen E. Daniels
  • Joshua Dijksman
  • Nicolas Docquier
  • Henry O. Everitt
  • Jonathan E. Kollmer
  • Olivier Lantsoght
  • Dong Wang
  • Marcel Workamp
  • Yiqiu Zhao
  • Hu Zheng
Original Paper
Part of the following topical collections:
  1. In Memoriam of Robert P. Behringer, late Editor in Chief of Granular Matter

Abstract

A photoelastic material will reveal its internal stresses when observed through polarizing filters. This eye-catching property has enlightened our understanding of granular materials for over half a century, whether in the service of art, education, or scientific research. In this review article in honor of Robert Behringer, we highlight both his pioneering use of the method in physics research, and its reach into the public sphere through museum exhibits and outreach programs. We aim to provide clear protocols for artists, exhibit-designers, educators, and scientists to use in their own endeavors. It is our hope that this will build awareness about the ubiquitous presence of granular matter in our lives, enlighten its puzzling behavior, and promote conversations about its importance in environmental and industrial contexts. To aid in this endeavor, this paper also serves as a front door to a detailed wiki containing open, community-curated guidance on putting these methods into practice (Abed-Zadeh et al. in Photoelastic methods wiki https://git-xen.lmgc.univ-montp2.fr/PhotoElasticity/Main/wikis/home, 2019).

Keywords

Photoelasticimetry Force chains Experimental methods Image post-processing Protocols 

Notes

Acknowledgements

We would like to thank Rémy Mozul for his technical support with the wiki [44]. Several conversations and collaborations have led to sharing the techniques described in this paper. We are grateful to Bernie Jelinek and Richard Nappi for sharing their technical knowledge about photoelastic material cutting. The outlook section contains insights gained from Chris M. Bingham, Willie J. Padilla, Anthony Llopis and Nan M. Jokerst (recent work on terahertz photoelasticity), and from Nathalie Vriend and Amalia Thomas (fast-imaging photoelasticity). Finally, we thank the late Robert Behringer for his kindness, his depth of knowledge gained from developing photoelastic techniques for two decades, and his stimulating attitude towards every new generation of scientists passing through his laboratory. This review article is a product of his excellent mentorship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Frocht, M.M.: Photoelasticity: The Selected Scientific Papers of MM Frocht, vol. 2. Pergamon, New York (1969)Google Scholar
  2. 2.
    Cloud, G.: Photoelasticity, pp. 55–56. Cambridge University Press, Cambridge (1995)Google Scholar
  3. 3.
    Daniels, K.E., Kollmer, J.E., Puckett, J.G.: Photoelastic force measurements in granular materials. Rev. Sci. Instrum. 88(5), 051808 (2017)ADSGoogle Scholar
  4. 4.
    Cox, M., Wang, D., Barés, J., Behringer, R.P.: Self-organized magnetic particles to tune the mechanical behavior of a granular system. Europhys. Lett. 115(6), 64003 (2016)ADSGoogle Scholar
  5. 5.
    Wakabayashi, T.: Photo-elastic method for determination of stress in powdered mass. J. Phys. Soc. Jpn. 5(5), 383–385 (1950)ADSGoogle Scholar
  6. 6.
    Dantu, P.: Proceedings of the 4th international conference on soil mechanics and foundations engineering (1957)Google Scholar
  7. 7.
    Drescher, A., De Jong De Josselin, G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20(5), 337–340 (1972)ADSGoogle Scholar
  8. 8.
    Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269(5223), 513–515 (1995)ADSGoogle Scholar
  9. 9.
    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2d granular couette experiment: a continuous transition. Phys. Rev. Lett. 82(26), 5241 (1999)ADSGoogle Scholar
  10. 10.
    Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079 (2005)ADSGoogle Scholar
  11. 11.
    Amon, A., Born, P., Daniels, K.E., Dijksman, J.A., Huang, K., Parker, D., Schröter, M., Stannarius, R., Wierschem, A.: Preface: focus on imaging methods in granular physics (2017)Google Scholar
  12. 12.
    Barés, J., Mora, S., Delenne, J.-Y., Fourcaud, T.: Experimental observations of root growth in a controlled photoelastic granular material. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 14008 (2017)Google Scholar
  13. 13.
    Kollmer, J.E.: Photoelastic grain solver (pegs). https://github.com/jekollmer/PEGS (2018)
  14. 14.
    Lantsoght, O., Docquier, N.: Photoelastic grain solver with pyhton (pegspy). https://git.immc.ucl.ac.be/olantsoght/pegs_py (2018)
  15. 15.
    Barés, J., Wang, D., Wang, D., Bertrand, T., O’Hern, C.S., Behringer, R.P.: Local and global avalanches in a two-dimensional sheared granular medium. Phys. Rev. E 96(5), 052902 (2017)ADSGoogle Scholar
  16. 16.
    Abed-Zadeh, A., Barés, J., Socolar, J., Behringer, R.P.: Seismicity in sheared granular matter. arXiv preprint arXiv:1810.12243 (2018)
  17. 17.
    Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3), 035506 (2001)ADSGoogle Scholar
  18. 18.
    Zhang, J., Majmudar, T.S., Tordesillas, A., Behringer, R.P.: Statistical properties of a 2d granular material subjected to cyclic shear. Granul. Matter 12(2), 159–172 (2010)Google Scholar
  19. 19.
    Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98(5), 058001 (2007)ADSGoogle Scholar
  20. 20.
    Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355–358 (2011)ADSGoogle Scholar
  21. 21.
    Ren, J., Dijksman, J.A., Behringer, R.P.: Reynolds pressure and relaxation in a sheared granular system. Phys. Rev. Lett. 110(1), 018302 (2013)ADSGoogle Scholar
  22. 22.
    Zheng, H., Dijksman, J.A., Behringer, R.P.: Shear jamming in granular experiments without basal friction. EPL (Europhys. Lett.) 107(3), 34005 (2014)ADSGoogle Scholar
  23. 23.
    Wang, D., Ren, J., Dijksman, J.A., Zheng, H., Behringer, R.P.: Microscopic origins of shear jamming for 2d frictional grains. Phys. Rev. Lett. 120, 208004 (2018)ADSGoogle Scholar
  24. 24.
    Clark, A.H., Kondic, L., Behringer, R.P.: Particle scale dynamics in granular impact. Phys. Rev. Lett. 109(23), 238302 (2012)ADSGoogle Scholar
  25. 25.
    Lim, M.X., Barés, J., Zheng, H., Behringer, R.P.: Force and mass dynamics in non-Newtonian suspensions. Phys. Rev. Lett. 119(18), 184501 (2017)ADSGoogle Scholar
  26. 26.
    Zheng, H., Wang, D., Chen, D.Z., Wang, M., Behringer, R.P.: Intruder friction effects on granular impact dynamics. Phys. Rev. E 98, 032904 (2018)ADSGoogle Scholar
  27. 27.
    Zuriguel, I., Mullin, T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. A: Math. Phys. Eng. Sci. 464(2089), 99–116 (2008)MathSciNetADSGoogle Scholar
  28. 28.
    Lherminier, S., Planet, R., Simon, G., Vanel, L., Ramos, O.: Revealing the structure of a granular medium through ballistic sound propagation. Phys. Rev. Lett. 113(9), 098001 (2014)ADSGoogle Scholar
  29. 29.
    Shukla, A.: Dynamic photoelastic studies of wave propagation in granular media. Opt. Lasers Eng. 14(3), 165–184 (1991)Google Scholar
  30. 30.
    Owens, E.T., Daniels, K.E.: Sound propagation and force chains in granular materials. Europhys. Lett. 94(5), 54005 (2011)ADSGoogle Scholar
  31. 31.
    Huillard, G., Noblin, X., Rajchenbach, J.: Propagation of acoustic waves in a one-dimensional array of noncohesive cylinders. Phys. Rev. E 84, 016602 (2011)ADSGoogle Scholar
  32. 32.
    Puckett, J.G., Daniels, K.E.: Equilibrating temperaturelike variables in jammed granular subsystems. Phys. Rev. Lett. 110(5), 058001 (2013)ADSGoogle Scholar
  33. 33.
    Bililign, E.S., Kollmer, J.E., Daniels, K.E.: Protocol dependence and state variables in the force-moment ensemble. Phys. Rev. Lett. 122(3), 038001 (2019)ADSGoogle Scholar
  34. 34.
    Kollmer, J., Daniels, K.: Betweenness centrality as predictor for forces in granular packings. Soft Matter (2018).  https://doi.org/10.1039/C8SM01372A CrossRefGoogle Scholar
  35. 35.
    Coulais, C., Seguin, A., Dauchot, O.: Shear modulus and dilatancy softening in granular packings above jamming. Phys. Rev. Lett. 113(19), 198001 (2014)ADSGoogle Scholar
  36. 36.
    Iikawa, N., Bandi, M.M., Katsuragi, H.: Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116(12), 128001 (2016)ADSGoogle Scholar
  37. 37.
    Mahabadi, N., Jang, J.: The impact of fluid flow on force chains in granular media. Appl. Phys. Lett. 110(4), 041907 (2017)ADSGoogle Scholar
  38. 38.
    Wendell, D.M., Luginbuhl, K., Guerrero, J., Hosoi, A.E.: Experimental investigation of plant root growth through granular substrates. Exp. Mech. 52(7), 945–949 (2012)Google Scholar
  39. 39.
    Kolb, E., Hartmann, C., Genet, P.: Radial force development during root growth measured by photoelasticity. Plant Soil 360, 19–35 (2012)Google Scholar
  40. 40.
    Daniels, K.E., Hayman, N.W.: Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113(B11), B11411 (2008)ADSGoogle Scholar
  41. 41.
    Hayman, N.W., Ducloué, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168(12), 2239–2257 (2011)ADSGoogle Scholar
  42. 42.
    Geller, D.A., Ecke, R.E., Dahmen, K.A., Backhaus, S.: Stick-slip behavior in a continuum-granular experiment. Phys. Rev. E 92(6), 060201 (2015)ADSGoogle Scholar
  43. 43.
    Lherminier, S., Planet, R., Levy dit Vehel, V., Simon, G., Vanel, L., Maloy, K.J., Ramos, O.: Continuously sheared granular matter reproduces in detail seismicity laws. arXiv:1901.06735 (2019, January)
  44. 44.
    Abed-Zadeh, A., Barés, J., Brzinski, T., Daniels, K.E., Dijksman, J., Docqiuer, N., Everitt, H., Kollmer, J., Lantsoght, O., Wang, D., Workamp, M., Zhao, Y., Zheng, H.: Photoelastic methods wiki. https://git-xen.lmgc.univ-montp2.fr/PhotoElasticity/Main/wikis/home (2019)
  45. 45.
    Majmudar, T.S.: Experimental Studies of Two-Dimensional Granular Systems Using Grain-Scale Contact Force Measurements. PhD thesis, Duke University (2006)Google Scholar
  46. 46.
  47. 47.
    Clear flex™, castable urethane from smooth-on. https://www.smooth-on.com/product-line/clear-flex/
  48. 48.
  49. 49.
    Wang, D.: Response of Granular Materials to Shear: Origins of Shear Jamming, Particle Dynamics, and Effects of Particle Properties. PhD thesis, Duke University (2018)Google Scholar
  50. 50.
    Mold star™, castable silicone from smooth-on. https://www.smooth-on.com/product-line/mold-star/
  51. 51.
    So strong™, dye for urethane from smooth-on. https://www.smooth-on.com/product-line/strong/
  52. 52.
    Kilcast, D., Boyar, M.M., Hudson, J.B.: Gelatin photoelasticity: a new technique for measuring stress distributions in gels during penetration testing. J. Food Sci. 49(2), 654–655 (1984)Google Scholar
  53. 53.
    Workamp, M., Alaie, S., Dijksman, J.A.: What is fluidity? Designing an experimental system to probe stress and velocity fluctuations in flowing suspensions. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 03020 (2017)Google Scholar
  54. 54.
    Tomlinson, R.A., Taylor, Z.A.: Photoelastic materials and methods for tissue biomechanics applications. Opt. Eng. 54(8), 081208 (2015)Google Scholar
  55. 55.
    Damink, L.H.O., Dijkstra, P.J., Van Luyn, M.J.A., Van Wachem, P.B., Nieuwenhuis, P., Feijen, J.: Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6(8), 460–472 (1995)Google Scholar
  56. 56.
    Workamp, M., Alaie, S., Dijksman, J.A.: Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. Rev. Sci. Instrum. 87(12), 125113 (2016)ADSGoogle Scholar
  57. 57.
    Lherminier, S., Planet, R., Simon, G., Måløy, M., Vanel, L., Ramos, O.: A granular experiment approach to earthquakes. Rev. Cubana Fís 33(1), 55–58 (2016)Google Scholar
  58. 58.
    Veroclear™, printable transparent photoelastic material from smooth-on. https://www.stratasys.com/materials/search/veroclear
  59. 59.
    Wang, L., Ju, Y., Xie, H., Ma, G., Mao, L., He, K.: The mechanical and photoelastic properties of 3d printable stress-visualized materials. Sci. Rep. 7(1), 10918 (2017)ADSGoogle Scholar
  60. 60.
    Polarization, a company which sells polarizers and quater-waves plates by the foot. http://www.polarization.com/polarshop/
  61. 61.
    Zhao, Y., Barés, J., Zheng, H., Behringer, R.P.: Tuning strain of granular matter by basal assisted couette shear. In: EPJ Web of Conferences, vol.140, p. 03049. EDP Sciences (2017)Google Scholar
  62. 62.
    Shattuck, M.D.: Experimental techniques. In: Franklin, S.V., Shattuck, M.D. (eds.) Handbook of Granular Materials. CRC Press, Boca Raton (2015)Google Scholar
  63. 63.
    Peng, T., Balijepalli, A., Gupta, S.K., LeBrun, T.: Algorithms for on-line monitoring of micro spheres in an optical tweezers-based assembly cell. J. Comput. Inf. Sci. Eng. 79, 330–338 (2007)Google Scholar
  64. 64.
    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179(1), 298–310 (1996)ADSGoogle Scholar
  65. 65.
    Blair, D., Dufresne, E.: Matlab particle tracking code repository. http://site.physics.georgetown.edu/matlab/
  66. 66.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)Google Scholar
  67. 67.
    Landau, L.D., Lifshitz, E.M.: Theory of elasticity, vol. 7. Course Theor. Phys. 3, 109 (1986)Google Scholar
  68. 68.
    Abed-Zadeh, A., Barés, J., Behringer, R.P.: Crackling to periodic dynamics in granular media. Phys. Rev. E 99(4), 040901 (2019b)ADSGoogle Scholar
  69. 69.
    Zhao, Y., Zheng, H., Wang, D., Wang, M., Behringer, R.P.: Particle scale force sensor based on intensity gradient method in granular photoelastic experiments. New J. Phys. 21, 023009 (2019).  https://doi.org/10.1088/1367-2630/ab05e7 CrossRefADSGoogle Scholar
  70. 70.
    Majmudar, T.S.: Experimental studies of two-dimensional granular systems using grain-scale contact force measurements (Doctoral Dissertation). Duke University (2006)Google Scholar
  71. 71.
    Farhadi, S., Behringer, R.P: Dynamics of sheared ellipses and circular disks: effects of particle shape. Phys. Rev. Lett. 112(14), 148301 (2014)ADSGoogle Scholar
  72. 72.
    Farhadi, S., Zhu, A.Z, Behringer, R.P: Stress relaxation for granular materials near jamming under cyclic compression. Phys. Rev. Lett. 115(18), 188001 (2015)ADSGoogle Scholar
  73. 73.
    Iikawa, N., Bandi, M.M., Katsuragi, H.: Structural evolution of a granular pack under manual tapping. J. Phys. Soc. Jpn. 84(9), 094401 (2015).  https://doi.org/10.7566/JPSJ.84.094401 CrossRefADSGoogle Scholar
  74. 74.
    Lantsoght, O.: Couplage entre dynamique multicorps et méthode des éléments discrets: modélisation et expérimentation. phdthesis, Université Catholique de Louvain (2019)Google Scholar
  75. 75.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  76. 76.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)ADSGoogle Scholar
  77. 77.
    Yu, P., Frank-Richter, S., Börngen, A., Sperl, M.: Monitoring three-dimensional packings in microgravity. Granul. Matter 16(2), 165–173 (2014)Google Scholar
  78. 78.
    Mahon, R.J., Murphy, J.A., Lanigan, W.: Digital holography at millimetre wavelengths. Opt. Commun. 260(2), 469–473 (2006)ADSGoogle Scholar
  79. 79.
    Heimbeck, M.S., Kim, M.K., Gregory, D.A., Everitt, H.O.: Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods. Opt. Express 19(10), 9192–9200 (2011)ADSGoogle Scholar
  80. 80.
    Everitt, H.O., Tyler, T., Caraway, B.D., Bingham, C.M., Llopis, A., Heimbeck, M.S., Padilla, W.J., Smith, D.R., Jokerst, N.M.: Strain sensing with metamaterial composites. Adv. Opt. Mater. 7, 1801397 (2019)Google Scholar
  81. 81.
    Thomas, A.L., Vriend, N.M.: Photoelastic study of dense granular free-surface flows. preprint (2019)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aghil Abed Zadeh
    • 1
  • Jonathan Barés
    • 2
    Email author
  • Theodore A. Brzinski
    • 3
  • Karen E. Daniels
    • 4
  • Joshua Dijksman
    • 5
  • Nicolas Docquier
    • 6
  • Henry O. Everitt
    • 7
  • Jonathan E. Kollmer
    • 8
  • Olivier Lantsoght
    • 6
  • Dong Wang
    • 1
  • Marcel Workamp
    • 5
  • Yiqiu Zhao
    • 1
  • Hu Zheng
    • 1
    • 9
  1. 1.Department of Physics and Center for Nonlinear and Complex SystemsDuke UniversityDurhamUSA
  2. 2.Laboratoire de Mécanique et Génie CivilUniversité de Montpellier, CNRSMontpellierFrance
  3. 3.Department of PhysicsHaverford CollegeHaverfordUSA
  4. 4.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  5. 5.Physical Chemistry and Soft MatterWageningen University & ResearchWageningenThe Netherlands
  6. 6.Institute of Mechanics, Material and Civil EngineeringUniversité catholique de LouvainLouvain-la-NeuveBelgium
  7. 7.Department of Physics and Department of ChemistryDuke UniversityDurhamUSA
  8. 8.Department of PhysicsUniversität Duisburg-EssenDuisburgGermany
  9. 9.School of Earth Science and EngineeringHohai UniversityNanjingChina

Personalised recommendations