Advertisement

Granular Matter

, 21:88 | Cite as

Force transmission and anisotropic characteristics of sheared granular materials with rolling resistance

  • Wei Wu
  • Gang MaEmail author
  • Wei Zhou
  • Di Wang
  • Xiaolin Chang
Original Paper
  • 200 Downloads

Abstract

We adopt a two-dimensional granular assembly in a direct shear box to systematically investigate the role of rolling resistance during the shearing process. A discrete element method with parallel computation and a rolling friction model is utilized in this paper. The macro- and microscale responses are sensitively subjected to a change in the rolling friction. The critical-state indices are found to be linearly related to each other, and the linear relationship between the critical-state indices and the rolling friction coefficient is evidently observed. The macro- and microscopic relationships are discussed from the connections between the stress and fabric properties. For microscale behaviors, different rolling frictions can generate various magnitudes of arching effects caused by antirotation and pose different characteristics to the force chains. The algorithm related to the extraction of force chains is adopted to explain the local sustaining structures. The localization, length, number and magnitude distribution of the force chains depend on the rolling friction. The influence of the rolling resistance on the friction mobilization is evident. A transition of the force distribution from the exponential to the Gaussian distribution is observed when the rolling resistance conditions change. The strong–weak contact systems and various anisotropic parameters are utilized to characterize the mechanical and geometrical roles of rolling resistance.

Keywords

Direct shear DEM Rolling friction Critical state Force chain Anisotropy 

Notes

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFC0404801), the National Natural Science Foundation of China (Grant No. 51579193), the Fundamental Research Funds for the Central Universities (Grant No. 2042017kf0277), and The Major Special Project of Guizhou Province (Grant No. (2017)6013-2).

Compliance with ethical standards

Conflict of interest

The all authors declare that no conflict of interest exists in the submission of this manuscript and that it is compliant with ethical standards.

References

  1. 1.
    Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011).  https://doi.org/10.1016/j.powtec.2010.09.030 CrossRefGoogle Scholar
  2. 2.
    Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998).  https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285) CrossRefGoogle Scholar
  3. 3.
    Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38, 1713–1740 (2000).  https://doi.org/10.1016/S0020-7225(99)00132-9 CrossRefGoogle Scholar
  4. 4.
    Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000).  https://doi.org/10.1016/S0032-5910(99)00236-3 CrossRefGoogle Scholar
  5. 5.
    Tordesillas, A., Walsh, D.C.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002).  https://doi.org/10.1016/S0032-5910(01)00490-9 CrossRefGoogle Scholar
  6. 6.
    Jiang, M.J.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005).  https://doi.org/10.1016/j.compgeo.2005.05.001 CrossRefGoogle Scholar
  7. 7.
    Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78, 1–11 (2008).  https://doi.org/10.1103/PhysRevE.78.021301 CrossRefGoogle Scholar
  8. 8.
    Oda, M., Kazama, H., Konishi, J.: Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28, 103–111 (1998).  https://doi.org/10.1016/S0167-6636(97)00018-5 CrossRefGoogle Scholar
  9. 9.
    Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 10 (2011).  https://doi.org/10.1103/PhysRevE.84.011306 CrossRefGoogle Scholar
  10. 10.
    Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granul. Matter 12, 527–541 (2010).  https://doi.org/10.1007/s10035-010-0211-x zbMATHCrossRefGoogle Scholar
  11. 11.
    Fukumoto, Y., Sakaguchi, H., Murakami, A.: The role of rolling friction in granular packing. Granul. Matter 15, 175–182 (2013).  https://doi.org/10.1007/s10035-013-0398-8 CrossRefGoogle Scholar
  12. 12.
    Zhao, J., Guo, N.: Rotational resistance and shear-induced anisotropy in granular media. Acta Mech. Solida Sin. 27, 1–14 (2014).  https://doi.org/10.1016/S0894-9166(14)60012-4 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Taylor, D.: Fundamentals of soil mechanics. Limited.; New York, Chapman And Hall (1948)CrossRefGoogle Scholar
  14. 14.
    Saada, A.S., Townsend, F.C.: State of the art: laboratory strength testing of soils. In: Laboratory shear strength of soil. ASTM International (1981)Google Scholar
  15. 15.
    Terzaghi, K., Peck, R.B., Mesri, G.: Soil mechanics in engineering practice, 3rd edn, p. 664. Wiley, New york (1996)Google Scholar
  16. 16.
    Potts, D.M., Dounias, G.T., Vaughan, P.R.: Finite element analysis of the direct shear box test. Géotechnique 37, 11–23 (1987).  https://doi.org/10.1680/geot.1987.37.1.11 CrossRefGoogle Scholar
  17. 17.
    Ai, J., Langston, P.A., Yu, H.S.: Discrete element modelling of material non-coaxiality in simple shear flows. Int. J. Numer. Anal. Methods Geomech. 38(6), 615–635 (2014)CrossRefGoogle Scholar
  18. 18.
    Dounias, G.T., Potts, D.M.: Numerical analysis of drained direct and simple shear tests. J. Geotech. Eng. 119, 1870–1891 (1993).  https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1870) CrossRefGoogle Scholar
  19. 19.
    Masson, S., Martinez, J.: Micromechanical analysis of the shear behavior of a granular material. J. Eng. Mech. 127, 1007–1016 (2001).  https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(1007) CrossRefGoogle Scholar
  20. 20.
    Cui, L., O’Sullivan, C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56, 455–468 (2006).  https://doi.org/10.1680/geot.56.7.455 CrossRefGoogle Scholar
  21. 21.
    Liu, S.H.: Simulating a direct shear box test by DEM. Can. Geotech. J. 43(2), 155–168 (2006)CrossRefGoogle Scholar
  22. 22.
    Liu, C., Nagel, S.R., Schecter, D.A., et al.: Force fluctuations in bead packs. Science 269(5223), 513–515 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Random packings of frictionless particles. Phys. Rev. Lett. 88, 4 (2002).  https://doi.org/10.1103/PhysRevLett.88.075507 CrossRefGoogle Scholar
  24. 24.
    LIGGGHTS: a new open source discrete element simulation software. In: Proceedings of the fifth international conference on discrete element methods, London, UK (2010)Google Scholar
  25. 25.
    Oda, M.: The mechanism of fabric changes during compressional deformation of sand. Soils Found. 12, 1–18 (1972).  https://doi.org/10.3208/sandf.47.887 CrossRefGoogle Scholar
  26. 26.
    Oda, M.: Fabric tensor for discontinuous geological materials. Soils Found. 22, 96–108 (1982).  https://doi.org/10.3208/sandf1972.22.4_96 CrossRefGoogle Scholar
  27. 27.
    Ken-Ichi, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984).  https://doi.org/10.1016/0020-7225(84)90090-9 MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mehrabadi, M.M., Nemat-Nasser, S., Oda, M.: On statistical description of stress and fabric in granular materials. Int. J. Numer. Anal. Methods Geomech. 6, 95–108 (1982).  https://doi.org/10.1002/nag.1610060107 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Oda, M.: Fabric tensor and its geometrical meaning. In: Introduction to mechanics of granular materials (1999)Google Scholar
  30. 30.
    Bathurst, R.J., Rothenburg, L.: Investigation of micromechanical features of idealized granular assemblies using DEM. Eng. Comput. 9(2), 199–210 (1992)CrossRefGoogle Scholar
  31. 31.
    Bathurst, R.J., Rothenburg, L.: Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater. 9(1), 65–80 (1990)CrossRefGoogle Scholar
  32. 32.
    Rothenburg L.: Micromechanics of idealized granular systems. Ph.D. Dissertation, Carleton University, Ottawa (1982)Google Scholar
  33. 33.
    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy granular materials in idealized. Geotechnique 39, 601–614 (1989)CrossRefGoogle Scholar
  34. 34.
    Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48(2), 339–344 (1981)zbMATHADSCrossRefGoogle Scholar
  35. 35.
    Rothenburg, L., Selvadurai, A.P.S.: A micromechanical definition of the Cauchy stress tensor for particulate media. In: Mechanics of structured media, pp. 469–486 (1981)Google Scholar
  36. 36.
    Ouadfel, H., Rothenburg, L.: Stress–force–fabric relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)CrossRefGoogle Scholar
  37. 37.
    Ma, G., Chang, X.L., Zhou, W., Ng, T.T.: Mechanical response of rockfills in a simulated true triaxial test: a combined FDEM study. Geomech. Eng. 7(3), 317 (2014)CrossRefGoogle Scholar
  38. 38.
    Zhou, W., Liu, J., Ma, G., Yuan, W., Chang, X.L.: Macroscopic and microscopic behaviors of granular materials under proportional strain path: a DEM study. Int. J. Numer. Anal. Methods Geomech. 40(18), 2450–2467 (2016)CrossRefGoogle Scholar
  39. 39.
    Zhou, W., Yang, L., Ma, G., Chang, X., Lai, Z., Xu, K.: DEM analysis of the size effects on the behavior of crushable granular materials. Granul. Matter (2016).  https://doi.org/10.1007/s10035-016-0656-7 CrossRefGoogle Scholar
  40. 40.
    Zhou, W., Wu, W., Ma, G., Huang, Y., Chang, X.L.: Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM. Granul. Matter 19(4), 76 (2017)CrossRefGoogle Scholar
  41. 41.
    Kloss, C., Goniva, C.: LIGGGHTS User Manual. (2014). https://www.cfdem.com/media/DEM/docu/Manual.html
  42. 42.
    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006).  https://doi.org/10.1038/nature04801 zbMATHADSCrossRefGoogle Scholar
  43. 43.
    Wang, J., Dove, J.E., Gutierrez, M.S.: Discrete-continuum analysis of shear banding in the direct shear test. Geotechnique (2007).  https://doi.org/10.1680/geot.2007.57.6.513 CrossRefGoogle Scholar
  44. 44.
    Oda, M., Konishi, J.: Rotation of principal stresses in granular material during simple shear. Soils Found. 14(4), 39–53 (1974)CrossRefGoogle Scholar
  45. 45.
    Thornton, C.: A DEM comparison of different shear testing devices. In: Powders and grains, pp. 183–190 (2001)Google Scholar
  46. 46.
    Xiao, Y., Sun, Y., Liu, H., et al.: Critical behaviors of a coarse granular soil under generalized stress conditions. Granul. Matter 18, 1–13 (2016)CrossRefGoogle Scholar
  47. 47.
    Xiao, Y., Liu, H., Ding, X., et al.: Influence of particle breakage on critical state line of rockfill material. Int. J. Geomech. 16(1), 04015031 (2016)CrossRefGoogle Scholar
  48. 48.
    Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8), 695 (2013)CrossRefGoogle Scholar
  49. 49.
    Behringer, R., Veje, C., Carolina, N.: Stress Fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 10, 10 (1999).  https://doi.org/10.1103/PhysRevLett.82.5241 CrossRefGoogle Scholar
  50. 50.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50, 43–53 (2000).  https://doi.org/10.1680/geot.2000.50.1.43 CrossRefGoogle Scholar
  51. 51.
    Alonso-Marroquín, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 10 (2005).  https://doi.org/10.1103/PhysRevE.71.051304 CrossRefGoogle Scholar
  52. 52.
    Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D.: Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 65, 4 (2002).  https://doi.org/10.1103/PhysRevE.65.051307 CrossRefGoogle Scholar
  53. 53.
    Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998).  https://doi.org/10.1103/PhysRevLett.80.61 ADSCrossRefGoogle Scholar
  54. 54.
    Iikawa, N., Bandi, M.M., Katsuragi, H.: Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116, 1–5 (2016).  https://doi.org/10.1103/PhysRevLett.116.128001 CrossRefGoogle Scholar
  55. 55.
    Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 1–8 (2005).  https://doi.org/10.1103/PhysRevE.72.041307 CrossRefGoogle Scholar
  56. 56.
    Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1–3), 278–292 (2000)CrossRefGoogle Scholar
  57. 57.
    Oron, G., Herrmann, H.J.: Exact calculation of force networks in granular piles. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 58, 2079–2089 (1998).  https://doi.org/10.1103/PhysRevE.58.2079 CrossRefGoogle Scholar
  58. 58.
    Campbell, C.S.: A problem related to the stability of force chains. Granul. Matter 5, 129–134 (2003).  https://doi.org/10.1007/s10035-003-0138-6 zbMATHCrossRefGoogle Scholar
  59. 59.
    Behringer, R., Howell, D., Kondic, L., Tennakoon, S., Veje, C.: Predictability and granular materials. Phys. D Nonlinear Phenom. 133, 1–17 (1999).  https://doi.org/10.1016/S0167-2789(99)00094-9 ADSCrossRefGoogle Scholar
  60. 60.
    Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274–277 (1996).  https://doi.org/10.1103/PhysRevLett.77.274 ADSCrossRefGoogle Scholar
  61. 61.
    Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000).  https://doi.org/10.1103/PhysRevLett.84.4160 ADSCrossRefGoogle Scholar
  62. 62.
    O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001).  https://doi.org/10.1103/PhysRevLett.86.111 ADSCrossRefGoogle Scholar
  63. 63.
    Danylenko, V.A., Mykulyak, S.V., Polyakovskyi, V.O., Kulich, V.V., Oleynik, I.I.: Force distribution in a granular medium under dynamic loading. Phys. Rev. E 96, 1–6 (2017).  https://doi.org/10.1103/PhysRevE.96.012906 CrossRefGoogle Scholar
  64. 64.
    Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., Nagel, S.R.: Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 63, 413041–413048 (2001).  https://doi.org/10.1103/PhysRevE.63.041304 CrossRefGoogle Scholar
  65. 65.
    Baxter, G.W., Leone, R., Behringer, R.P.: Experimental test of time scales in flowing sand. Eur. Lett. 21, 569–574 (1993)ADSCrossRefGoogle Scholar
  66. 66.
    Hurley, R.C., Hall, S.A., Andrade, J.E., Wright, J.: Quantifying interparticle forces and heterogeneity in 3D granular materials. Phys. Rev. Lett. (2016).  https://doi.org/10.1103/PhysRevLett.117.098005 CrossRefGoogle Scholar
  67. 67.
    Chikkadi, V., Schall, P.: Nonaffine measures of particle displacements in sheared colloidal glasses. Phys. Rev. E 85(3), 031402 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    Alexander, S.: Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296(2–4), 65–236 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    Wyart, M., Nagel, S.R., Witten, T.A.: Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett. 72(3), 486 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    O’hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)ADSCrossRefGoogle Scholar
  71. 71.
    Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    Guo, N., Zhao, J.: Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89, 042208 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    Goldenberg, C., Tanguy, A., Barrat, J.L.: Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field. EPL (Europhys. Lett.) 80(1), 16003 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Chikkadi, V., Mandal, S., Nienhuis, B., Raabe, D., Varnik, F., Schall, P.: Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses. EPL (Europhys. Lett.) 100(5), 56001 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    Chen, D., Semwogerere, D., Sato, J., Breedveld, V., Weeks, E.R.: Microscopic structural relaxation in a sheared supercooled colloidal liquid. Phys. Rev. E 81(1), 011403 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina

Personalised recommendations