Advertisement

Granular Matter

, 21:71 | Cite as

Evaluation of one- and two-parameter models for estimation of void ratio of binary sand mixtures deposited by dry pluviation

  • Mintae Kim
  • Hoyoung SeoEmail author
Original Paper
  • 23 Downloads

Abstract

Dry pluviation is one of the most widely used methods to prepare granular soil samples at target void ratios for laboratory testing. This study experimentally investigates packing characteristics of binary sand mixtures deposited by dry pluviation with various mixing ratios and particle size ratios. Two theoretical models for estimating void ratios of binary mixtures are critically reviewed and presented in a coherent framework. Performances of these models are evaluated by comparing the predicted void ratios from the models against the measured void ratios obtained from a series of pluviation tests. We further propose empirical equations that can be used to determine the model parameters. This study demonstrates that the existing models with the model parameters obtained from the empirical equations provide reasonable estimates of void ratios of binary sand mixtures deposited by pluviation.

Keywords

Binary sand mixture Void ratio Pluviation Empirical model 

Notes

Compliance with ethical standards

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

References

  1. 1.
    Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Pet. Eng. 146, 54–62 (1942).  https://doi.org/10.2118/942054-G CrossRefGoogle Scholar
  2. 2.
    Carrier, W.D.: Goodbye, Hazen; Hello, Kozeny-Carman. J. Geotech. Geoenviron. Eng. 129(11), 1054–1056 (2003)CrossRefGoogle Scholar
  3. 3.
    De Vries, D.A.: Thermal properties of soils. In: van Wijk, W.R. (ed.) Physics of Plant Environment, pp. 210–235. North-Holland Publ. Co., Amsterdam (1963)Google Scholar
  4. 4.
    Brandon, T.L., Clough, G.W.: Methods of sample fabrication in the virginia tech calibration chamber. In: Proceedings of the First International Symposium on Calibration Chamber Testing, New York, United States, pp. 119–133 (1991)Google Scholar
  5. 5.
    Lo Presti, D.C.F., Pedroni, S., Crippa, V.: Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: a comparative study. Geotech. Test. J. 15(2), 180–189 (1992)CrossRefGoogle Scholar
  6. 6.
    Rad, N.S., Tumay, M.T.: Factors affecting sand specimen preparation by raining. Geotech. Test. J. 10(1), 31–37 (1987)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.F., Ward, A.L., Keller, J.M.: Determining the porosity and saturated hydraulic conductivity of binary mixtures. Vadose Zone Journal 10(1), 313–321 (2011)CrossRefGoogle Scholar
  8. 8.
    Wallen, B.M., Smits, K.M., Sakaki, T., Howington, S.E., Deepagoda, T.K.K.C.: Thermal conductivity of binary sand mixtures evaluated through full water content range. Soil Sci. Soc. Am. J. 80(3), 592–603 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    De Larrard, F.: Concrete Mixture Proportioning: A Scientific Approach. E & FN Spon, London (1999)Google Scholar
  10. 10.
    Yu, A.B., Standish, N.: Porosity calculations of multi-component mixtures of spherical particles. Powder Technol. 52(3), 233–241 (1987)CrossRefGoogle Scholar
  11. 11.
    Wong, V., Kwan, A.K.H.: A 3-parameter model for packing density prediction of ternary mixes of spherical particles. Powder Technol. 268, 357–367 (2014)CrossRefGoogle Scholar
  12. 12.
    Reed, J.S.: Principles of Ceramics Processing, 2nd edn. Wiley, New York (1995)Google Scholar
  13. 13.
    Lade, P.V., Yamamuro, J.: Effects of nonplastic fines on static liquefaction of sands. Can. Geotech. J. 34(6), 917–928 (1997)CrossRefGoogle Scholar
  14. 14.
    Zlatovic, S., Ishihara, K.: Normalized behavior of very loose non-plastic soils: effects of fabric. Soils Found. 37(4), 47–56 (1997)CrossRefGoogle Scholar
  15. 15.
    Lade, P.V., Liggio Jr., C.D., Yamamuro, J.A.: Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21(4), 336–347 (1998)CrossRefGoogle Scholar
  16. 16.
    Cubrinovski, M., Ishihara, K.: Maximum and minimum void ratio characteristics of sand. Soils Found. 42(6), 65–78 (2002)CrossRefGoogle Scholar
  17. 17.
    Thevanayagam, S.: Intergrain contact density indices for granular mixes—I: framework. Earthq. Eng. Eng. Vib. 6(2), 123–134 (2007).  https://doi.org/10.1007/s11803-007-0705-7 CrossRefGoogle Scholar
  18. 18.
    Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., Kayabali, K.: Experimental investigation of the effect of grading characteristics on the liquefaction resistance of various graded sands. Eng. Geol. 100, 91–100 (2008)CrossRefGoogle Scholar
  19. 19.
    Chang, C.S., Deng, Y.: A particle packing model for sand–silt mixtures with the effect of dual-skeleton. Granul. Matter 19(4), 80 (2017)CrossRefGoogle Scholar
  20. 20.
    Chang, C.S., Wang, J.-Y., Ge, L.: Modeling of minimum void ratio for sand–silt mixtures. Eng. Geol. 196, 293–304 (2015)CrossRefGoogle Scholar
  21. 21.
    Chang, C.S., Wang, J.-Y., Ge, L.: Maximum and minimum void ratios for sand–silt mixtures. Eng. Geol. 211, 7–18 (2016)CrossRefGoogle Scholar
  22. 22.
    Vallejo, L.E.: Interpretation of the limits in shear strength in binary granular mixtures. Can. Geotech. J. 38(5), 1097–1104 (2001)CrossRefGoogle Scholar
  23. 23.
    Choo, H., Lee, W., Burns, S.E.: Estimating porosity and particle size for hydraulic conductivity of binary mixed soils containing two different-sized silica particles. J. Geotech. Geoenviron. Eng. 144(1), 04017104 (2018)CrossRefGoogle Scholar
  24. 24.
    ASTM D4253-16.: Standard Test methods for maximum index density and unit weight of soils using a vibratory table, ASTM International, West Conshohocken, PA (2016).  https://doi.org/10.1520/D4253-16
  25. 25.
    ASTM D4254-16.: Standard test methods for minimum index density and unit weight of soils and calculation of relative density, ASTM International, West Conshohocken, PA (2016).  https://doi.org/10.1520/D4254-16
  26. 26.
    ASTM D7428-15.: Standard test method for resistance of fine aggregate to degradation by abrasion in the micro-deval apparatus. ASTM International, West Conshohocken, PA (2015).  https://doi.org/10.1520/D7428-15
  27. 27.
    Lee, J.: Experimental investigation of the load response of model piles in sand. Ph.D. Thesis, Purdue University, United States (2008)Google Scholar
  28. 28.
    Santamarina, J.C., Cho, G.: Determination of critical state parameters in sandy soils-simple procedure. Geotech. Test. J. 24(2), 185–192 (2001)CrossRefGoogle Scholar
  29. 29.
    Cho, G., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)CrossRefGoogle Scholar
  30. 30.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ketterhagen, W.R., Curtis, J.S., Wassgren, C.R., Hanckock, B.C.: Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers. Powder Technol. 179(3), 126–143 (2008)CrossRefGoogle Scholar
  32. 32.
    Swartz, A.G., Kalmbach, J.B., Olson, J., Zieve, R.J.: Segregation and stability of a binary granular heap. Granul. Matter 11, 185–191 (2009)CrossRefGoogle Scholar
  33. 33.
    Hajra, S.K., Khakhar, D.V.: Radial segregation of ternary granular mixtures in rotating cylinders. Granul. Matter 13, 475–486 (2011)CrossRefGoogle Scholar
  34. 34.
    Rodriguez, D., Benito, J.G., Ippolito, I., Hulin, J.-P., Vidales, A.M., Unac, R.O.: Dynamical effects in the segregation of granular mixures in quasi 2D piles. Powder Technol. 269, 101–109 (2015)CrossRefGoogle Scholar
  35. 35.
    Fan, Y., Jacob, K.V., Freireich, B., Lueptow, R.M.: Segregation of granular materials in bounded heap flow: a review. Powder Technol. 312, 67–88 (2017)CrossRefGoogle Scholar
  36. 36.
    Vaid, Y.P., Negussey, D.: Preparation of reconstituted sand specimens. Advanced triaxial testing of soil and rock, STP 977, pp. 405–417. ASTM International, West Conshohocken, PA (1988).  https://doi.org/10.1520/STP977-EB Google Scholar
  37. 37.
    Passalacqua, R.: A sand-spreader used for the reconstitution of granular soil models. Soils Found. 31(2), 175–180 (1991)CrossRefGoogle Scholar
  38. 38.
    Lagioia, R., Sanzeni, A., Colleselli, F.: Air, water and vacuum pluviation of sand specimens for the triaxial apparatus. Soils Found. 46(1), 61–67 (2006)CrossRefGoogle Scholar
  39. 39.
    Oliveira, F., Freitas, A., Morais, P., Mendes, B., Carvalho, A.T., Serra, J.B.: A Travelling sand pluviator to reconstruct large soil specimens. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012)Google Scholar
  40. 40.
    Hariprasad, C., Rajashekhar, M., Umashankar, B.: Preparation of uniform sand specimens using stationary pluviation and vibratory methods. Geotech. Geol. Eng. 34, 1909–1922 (2016)CrossRefGoogle Scholar
  41. 41.
    Gade, V.K., Dasaka, S.M.: Development of a mechanized traveling pluviator to prepare reconstituted uniform sand specimens. J. Mater. Civ. Eng. 28(2), 04015117 (2016).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001396 CrossRefGoogle Scholar
  42. 42.
    Tabaroei, A., Abrishami, S., Hosseininia, S.: Comparison between two different pluviation setups of sand specimens. J. Mater. Civ. Eng. 29(10), 04017157 (2017).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001985 CrossRefGoogle Scholar
  43. 43.
    Westman, A.E.R., Hugill, H.R.: The packing of particles. J. Am. Ceram. Soc. 13(10), 767–779 (1930).  https://doi.org/10.1111/j.1151-2916.1930.tb16222.x CrossRefGoogle Scholar
  44. 44.
    McGeary, R.K.: Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44(10), 513–522 (1961).  https://doi.org/10.1111/j.1151-2916.1961.tb13716.x CrossRefGoogle Scholar
  45. 45.
    Guyon, E., Oger, L., Plona, T.J.: Transport-properties in sintered porous-media composed of two particle sizes. J. Phys. D Appl. Phys. 20(12), 1637–1644 (1987)ADSCrossRefGoogle Scholar
  46. 46.
    Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary granular mixture. Granul. Matter 13(6), 731–742 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Construction EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations