Advertisement

Granular Matter

, 21:66 | Cite as

Dynamic boundary setting for discrete element method considering the seismic problems of rock masses

  • Xingtao ZhouEmail author
  • Qian Sheng
  • Zhen Cui
Original Paper
  • 111 Downloads

Abstract

The discrete element method (DEM) provides an effective approach to analyse the large deformations and discontinuous problems in geotechnical engineering. In this paper, to improve the capability of DEM for seismic response analysis of rock masses, the problem of boundary setting in DEM is systematically investigated. Three typical dynamic boundary conditions are reviewed and introduced into DEM. Calibration factors are introduced into the equations of the boundary conditions, and an approach is proposed to determine the factors for optimum wave absorption. The procedures for constructing the free-field domain and main-grid domain are proposed. The seismic dynamic input methods are researched, and a static-dynamic unified boundary technique is proposed to enable the consistent boundary transformation. Numerical examples are presented to verify the feasibility and effectiveness of the proposed boundary-setting methods.

Keywords

Discrete element method Boundary setting Calibration factor Seismic dynamic input Seismic response analysis 

Notes

Acknowledgements

We would like to acknowledge the reviewers and the editors for their comments and suggestions. The study was financially supported by the National Basic Research Program of China (No. 2015CB057905), the National Natural Science Foundation of China, (Nos. 51779253, 41672319), and the National Key R&D Program of China (No. 2016YFC0401803).

Compliance with ethical standards

Conflict of interest

This article is original. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Aziznejad, S., Esmaieli, K., Hadjigeorgiou, J., Labrie, D.: Response of jointed rock masses subjected to impact loading. J. Rock Mech. Geotech. Eng. 10(4), 624–634 (2018)CrossRefGoogle Scholar
  2. 2.
    Bahaaddini, M., Sharrock, G., Hebblewhite, B.K.: Numerical direct shear tests to model the shear behaviour of rock joints. Comput. Geotech. 51, 101–115 (2013)CrossRefGoogle Scholar
  3. 3.
    Bahaaddini, M., Hagan, P.C., Mitra, R., Khosravi, M.H.: Experimental and numerical study of asperity degradation in the direct shear test. Eng. Geol. 204, 41–52 (2016)CrossRefGoogle Scholar
  4. 4.
    Cai, M., Kaiser, P.K., Morioka, H., Minami, M., Maejima, T., Tasaka, Y., Kurose, H.: FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations. Int. J. Rock Mech. Min. Sci. 44, 550–564 (2007)CrossRefGoogle Scholar
  5. 5.
    Cao, W.Z., Li, X.B., Tao, M., Zhou, Z.L.: Vibrations induced by high initial stress release during underground excavations. Tunn. Undergr. Space Technol. 53, 78–95 (2016)CrossRefGoogle Scholar
  6. 6.
    Cundall, P.A.: A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Mechanics, vol. 1, pp. 129–136. Nancy, France (1971)Google Scholar
  7. 7.
    Cundall, P.A.: Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of manypolyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)CrossRefGoogle Scholar
  8. 8.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geothechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  9. 9.
    Deng, Q.H., Gong, L.X., Zhang, L.P., Yuan, R.M., Xue, Y.Q., Geng, X.G., Hu, S.X.: Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008 Wenchuan earthquake using discrete element modelling. Bull. Eng. Geol. Environ. 76, 923–936 (2017)CrossRefGoogle Scholar
  10. 10.
    Deeks, A.J., Randolph, M.F.: Axisymmetric time-domain transmitting boundaries. J. Eng. Mech. 120(1), 25–42 (1994)CrossRefGoogle Scholar
  11. 11.
    Elmekati, A., Shamy, U.E.: A practical co-simulation approach for multiscale analysis of geotechnical systems. Comput. Geotech. 37(4), 494–503 (2010)CrossRefGoogle Scholar
  12. 12.
    Fakhimi, A., Carvalho, F., Ishida, T., Labuz, J.F.: Simulation of failure around a circular opening in rock. Int. J. Rock Mech. Min. Sci. 39(4), 507–515 (2002)CrossRefGoogle Scholar
  13. 13.
    Francioni, M., Salvini, R., Stead, D., Litrico, S.: A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng. Geol. 183, 290–302 (2014)CrossRefGoogle Scholar
  14. 14.
    Fu, X.D., Sheng, Q., Zhang, Y.H., Zhou, Y.Q., Dai, F.: Boundary setting method for the seismic dynamic response analysis of engineering rock mass structures using the discontinuous deformation analysis method. Int. J. Numer. Anal. Methods Geomech. 39(15), 1693–1712 (2015)CrossRefGoogle Scholar
  15. 15.
    García, M., Pastén, C., Sepúlveda, S.A., Montalva, G.A.: Dynamic numerical investigation of a stepped-planar rockslide in the Central Andes, Chile. Eng. Geol. 237, 64–75 (2018)CrossRefGoogle Scholar
  16. 16.
    Gutiérrez-Ch, J.G., Senent, S., Melentijevic, S., Jimenez, R.: Distinct element method simulations of rock-concrete interfaces under different boundary conditions. Eng. Geol. 240, 123–139 (2018)CrossRefGoogle Scholar
  17. 17.
    Hadjigeorgiou, J., Esmaieli, K., Grenon, M.: Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunn. Undergr. Space Technol. 24(3), 296–308 (2009)CrossRefGoogle Scholar
  18. 18.
    He, J.M., Li, X., Li, S.D., Yin, Y.P., Qian, H.T.: Study of seismic response of colluvium accumulation slope by particle flow code. Granul. Matter 12(5), 483–490 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Hou, J., Zhang, M.X., Chen, Q., Wang, D., Javadi, A., Zhang, S.L.: Failure-mode analysis of loose deposit slope in Ya’an-Kangding Expressway under seismic loading using particle flow code. Granul. Matter 21(8), 1–12 (2019)Google Scholar
  20. 20.
    Huang, R.Q., Pei, X.J., Fan, X.M., Zhang, W.F., Li, S.G., Li, B.L.: The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides. 9(1), 131–142 (2012)CrossRefGoogle Scholar
  21. 21.
    Huang, X., Qi, S.W., Williams, A., Zou, Y., Zheng, B.W.: Numerical simulation of stress wave propagating through filled joints by particle model. Int. J. Solids Struct. 69–70, 23–33 (2015)CrossRefGoogle Scholar
  22. 22.
    Itasca Consulting Group Inc.: UDEC (universal distinct element code), version 5.0. ITASCA Consulting Group, Minneapolis, Minnesota, USA (2013)Google Scholar
  23. 23.
    Itasca Consulting Group Inc.: 3DEC (three dimensional distinct element code), version 5.0. ITASCA Consulting Group, Minneapolis, Minnesota, USA (2013)Google Scholar
  24. 24.
    Itasca Consulting Group Inc.: Particle Flow Code in 2 or 3 Dimensions, version 4.0, User’s manual, ITASCA Consulting Group, Minneapolis, Minnesota, USA (2008)Google Scholar
  25. 25.
    Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., Cundall, P.A.: The synthetic rock mass approach for jointed rock mass modelling. Int. J. Rock Mech. Min. Sci. 48(2), 219–244 (2011)CrossRefGoogle Scholar
  26. 26.
    Jia, M.C., Yang, Y., Liu, B., Wu, S.H.: PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granul. Matter 20(76), 1–15 (2018)ADSGoogle Scholar
  27. 27.
    Kveldsvik, V., Kaynia, A.M., Nadim, F., Bhasin, R., Nilsen, B., Einstein, H.H.: Dynamic distinct-element analysis of the 800 m high Åknes rock slope. Int. J. Rock Mech. Min. Sci. 46(4), 686–698 (2009)CrossRefGoogle Scholar
  28. 28.
    Li, M.G., Yu, H.T., Wang, J.H., Xia, X.H., Chen, J.J.: A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int. J. Numer. Methods Eng. 102(1), 1–21 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lu, C.Y., Tang, C.L., Chan, Y.C., Hu, J.C., Chi, C.C.: Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng. Geol. 183, 14–30 (2014)CrossRefGoogle Scholar
  30. 30.
    Lysmer, J., Kuhlemeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. ASCE 95(4), 859–877 (1969)Google Scholar
  31. 31.
    Liu, J.B., Lu, Y.D.: A direct method for analysis of dynamic soil-structure interaction based on interface idea. Dev. Geotech. Eng. 83, 261–276 (1998)Google Scholar
  32. 32.
    Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. A 203, 1–42 (1904)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Park, D., Jeon, B., Jeon, S.: A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration. Rock Mech. Rock Eng. 42(3), 449–473 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)CrossRefGoogle Scholar
  35. 35.
    Poulsen, B.A., Adhikary, D., Guo, H.: Simulating mining-induced strata permeability changes. Eng. Geol. 237, 208–216 (2018)CrossRefGoogle Scholar
  36. 36.
    Rafiee, R., Ataei, M., Khalookakaie, R., Jalali, S.E., Sereshki, F., Noroozi, M.: Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. Int. J. Rock Mech. Min. Sci. 105, 22–27 (2018)CrossRefGoogle Scholar
  37. 37.
    Resende, R., Lamas, L.N., Lemo, J.V., Calcada, R.: Micromechanical modelling of stress waves in rock and rock fractures. Rock Mech. Rock Eng. 43(6), 741–761 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Saiang, D.: Stability analysis of the blast-induced damage zone by continuum and coupled continuum-discontinuum methods. Eng. Geol. 116, 1–11 (2010)CrossRefGoogle Scholar
  39. 39.
    Shamy, U.E., Zamani, N.: Discrete element method simulations of the seismic response of shallow foundations including soil-foundation-structure interaction. Int. J. Numer. Anal. Meth. Geomech. 36(10), 1303–1329 (2012)CrossRefGoogle Scholar
  40. 40.
    Tang, C.L., Hu, J.C., Lin, M.L., Yuan, R.M., Cheng, C.C.: The mechanism of the 1941 Tsaoling landslide, Taiwan: insight from a 2D discrete element simulation. Environ. Earth Sci. 70(3), 1005–1019 (2013)CrossRefGoogle Scholar
  41. 41.
    Tu, F.B., Ling, D.S., Bu, L.F., Yang, Q.D.: Generalized bridging domain method for coupling finite elements with discrete elements. Comput. Methods Appl. Mech. Eng. 276, 509–533 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wagner, G.J., Liu, W.K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190(1), 249–274 (2003)ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Wang, C., Tannant, D.D., Lilly, P.A.: Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int. J. Rock Mech. Min. Sci. 40(3), 415–424 (2003)CrossRefGoogle Scholar
  44. 44.
    Washino, K., Chan, E.L., Tanaka, T.: DEM with attraction forces using reduced particle stiffness. Powder Technol. 325, 202–208 (2017)CrossRefGoogle Scholar
  45. 45.
    Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 1645–1669 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Yang, S.Q., Huang, Y.H., Jing, H.W., Liu, X.R.: Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 178, 28–48 (2014)CrossRefGoogle Scholar
  47. 47.
    Yuan, R.M., Tang, C.L., Hu, J.C., Xu, X.W.: Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling. Nat. Hazards Earth Syst. Sci. 14(5), 1195–1205 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Zhou, J.W., Cui, P., Fang, H.: Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3), 331–342 (2013)CrossRefGoogle Scholar
  49. 49.
    Zhou, J.W., Huang, K.X., Shi, C., Hao, M.H., Guo, C.X.: Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China. J. Asian Earth Sci. 99, 95–111 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Zienkiewicz, O.C., Bicanic, N., Shen, F.Q.: Earthquake input definition and the trasmitting boundary conditions. In: Proceedings of Advances in Computational Nonlinear Mechanics, pp. 109–138. Springer, Berlin (1988)CrossRefGoogle Scholar
  51. 51.
    Zimmerman, J.A., Klein, P.A.: Coupled atomistic-continuum simulations using arbitrary overlapping domains. J. Comput. Phys. 213, 86–116 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and ArchitectureHubei University of Arts and ScienceXiangyangChina
  2. 2.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina

Personalised recommendations