Advertisement

Granular Matter

, 21:52 | Cite as

Induced force chain anisotropy of cohesionless granular materials during biaxial compression

  • Longlong Fu
  • Shunhua ZhouEmail author
  • Peijun Guo
  • Shun Wang
  • Zhe Luo
Original Paper
  • 36 Downloads

Abstract

This paper investigates the induced anisotropy and multi-scale shear characteristics of granular materials by quantifying force chain distribution in two-dimensional specimens of rigid particles under quasi-static loading. A new criterion is proposed and implemented into the existing algorithm which can effectively solve the identification instability of force chains at branching and merging points. Force chain is then classified into three categories according to the variation of force chain quantity and average stress with segment length: stable segments, meta-stable segments and unstable force chain segments. The stable force chain segments dominate the load-bearing behavior of the granular materials. The directional distribution of force chain segments is more anisotropic and more sensitive to the applied stress than contact normal vectors, which show obvious local peaks in both vertical and horizontal directions at high deviatoric stress. Therefore, the probability density of directional distribution of force chains needs to be described by the first two deviatoric components of Fourier expansion with deviators A1 and A2, which are indicators reflecting the intensity of the induced-anisotropy of the granular materials. As the absolute values of A1 and A2 increase, the induced anisotropy is more significant. The final shear failure types are determined by the quantities of force chains orienting in two potential shear failure directions: if there is an obvious difference between the quantities of the two directions, single shear band occurs within the direction with less force chains; otherwise, conjugated double shear bands occur and lie in the two potential shear failure directions.

Keywords

Granular materials DEM Force chains Induced anisotropy Shear band 

Notes

Acknowledgements

The NSFC (National Natural Science Foundation of China) Program, Grant Nos. 51708423 and 51761135109 are greatly appreciated for providing financial support for this research. The authors also thank Mr. Zhekan Tian for his assistance in preparation of the figures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aharonov, E., Sparks, D.: Shear profiles and localization in simulations of granular materials. Phys. Rev. E 65, 051302 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Wan, R., Guo, P., Al-Mamun, M.: Behaviour of granular materials in relation to their fabric dependencies. Soils Found. 45, 77–86 (2005)CrossRefGoogle Scholar
  3. 3.
    Behringer, R., Daniels, K.E., Majmudar, T.S., Sperl, M.: Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 493–504 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4, 3–16 (2009)CrossRefGoogle Scholar
  5. 5.
    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 601–614 (1989)CrossRefGoogle Scholar
  6. 6.
    Guo, P., Stolle, D.F.E.: On the failure of granular materials with fabric effects. Soils Found. 45, 1–12 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhu, H., Nicot, F., Darve, F.: Meso-structure evolution in a 2D granular material during biaxial loading. Granul. Matter 18, 3 (2016)CrossRefGoogle Scholar
  8. 8.
    Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48, 465–481 (1998)CrossRefGoogle Scholar
  9. 9.
    Tordesillas, A., Muthuswamy, M.: A thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech. 3, 225–240 (2008)CrossRefGoogle Scholar
  10. 10.
    Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)CrossRefGoogle Scholar
  11. 11.
    Guo, P.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41–55 (2012)CrossRefGoogle Scholar
  12. 12.
    Dantu, P.: Contribution à l’ètude mècanique et gèomètrique des milieux pulvèrulents. In: Presented at the 4th International Conference on Soil Mechanics and Foundation Engineering, London (1957)Google Scholar
  13. 13.
    Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Ouaguenouni, S., Roux, J.-N.: Force distribution in frictionless granular packings at rigidity threshold. Europhys. Lett. 39, 117–122 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Goldenberg, C., Goldhirsch, I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Bigoni, D., Noselli, G.: Localized stress percolation through dry masonry walls. Part I—Experiments. Eur. J. Mech. A/Solids 29, 291–298 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Bigoni, D., Noselli, G.: Localized stress percolation through dry masonry walls. Part II—Modelling. Eur. J. Mech. A/Solids 29, 299–307 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Chaiamarit, C., Balandraud, X., Preechawuttipong, I., Grédiac, M.: Stress network analysis of 2D non-cohesive polydisperse granular materials using infrared thermography. Exp. Mech. 55, 761–769 (2015)CrossRefGoogle Scholar
  21. 21.
    Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25, 85–97 (1985)CrossRefGoogle Scholar
  22. 22.
    Vairaktaris, E., Theocharis, A.I., Dafalias, Y.F.: Correlation of fabric tensors for granular materials using 2D DEM. Acta Geotech. (2018).  https://doi.org/10.1007/s11440-019-00811-z CrossRefGoogle Scholar
  23. 23.
    Theocharis, A.I., Vairaktaris, E., Dafalias, Y.F.: Scan line void fabric anisotropy tensors of granular media. Granul. Matter 19, 68 (2017)CrossRefGoogle Scholar
  24. 24.
    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Drescher, A., De Jong, G.D.J.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–351 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    Ken-Ichi, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Raihan Taha, M., Shaverdi, H.: Evolution of fabric under the rotation of the principal stress axes in the simple shear test. Mech. Mater. 69, 173–184 (2014)CrossRefGoogle Scholar
  28. 28.
    Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., Nagel, S.R.: Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. Phys. Rev. E 63, 041304 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Kruyt, N., Rothenburg, L.: Probability density functions of contact forces for cohesionless frictional granular materials. Int. J. Solids Struct. 39, 571–583 (2002)CrossRefGoogle Scholar
  30. 30.
    Oda, M.: Fabric tensor for discontinous geological materials. Soils Found. 22, 96–108 (1982)CrossRefGoogle Scholar
  31. 31.
    Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85, 031303 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Campbell, C.S.: A problem related to the stability of force chains. Granul. Matter 5, 129–134 (2003)CrossRefGoogle Scholar
  36. 36.
    Hunt, G.W., Tordesillas, A., Green, S.C., Shi, J.: Force-chain buckling in granular media: a structural mechanics perspective. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 249–262 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265–296 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Zhang, L., Nguyen, N.G.H., Lambert, S., Nicot, F., Prunier, F., Djeran-Maigre, I.: The role of force chains in granular materials: from statics to dynamics. Eur. J. Environ. Civil Eng. 21, 874–895 (2017)CrossRefGoogle Scholar
  39. 39.
    Blumenfeld, R.: Stresses in isostatic granular systems and emergence of force chains. Phys. Rev. Lett. 93, 108301 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? J. Stat. Mech Theory Exp. 2006, P09003 (2006)CrossRefGoogle Scholar
  41. 41.
    Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Van Siclen, C.D.: Force structure of frictionless granular piles. Physica A 333, 155–167 (2004)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Han, J., Bhandari, A., Wang, F.: DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int. J. Geomech. 12, 340–350 (2012)CrossRefGoogle Scholar
  44. 44.
    Sazzad, M.M., Suzuki, K.: Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM. Granul. Matter 12, 597–605 (2010)CrossRefGoogle Scholar
  45. 45.
    Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9, 69–80 (2006)CrossRefGoogle Scholar
  46. 46.
    Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018)CrossRefGoogle Scholar
  47. 47.
    Rui, R., van Tol, F., Xia, X.-L., van Eekelen, S., Hu, G., Xia, Y.: Evolution of soil arching; 2D DEM simulations. Comput. Geotech. 73, 199–209 (2016)CrossRefGoogle Scholar
  48. 48.
    Gu, X., Huang, M., Qian, J.: Discrete element modeling of shear band in granular materials. Theor. Appl. Fract. Mech. 72, 37–49 (2014)CrossRefGoogle Scholar
  49. 49.
    Sadrekarimi, A., Olson, S.M.: Shear band formation observed in ring shear tests on sandy soils. J. Geotech. Geoenviron. Eng. 136, 366–375 (2010)CrossRefGoogle Scholar
  50. 50.
    Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 28, 279–321 (2004)CrossRefGoogle Scholar
  51. 51.
    Lumb, P.: Safety factors and the probability distribution of soil strength. Can. Geotech. J. 7, 225–242 (1970)CrossRefGoogle Scholar
  52. 52.
    Shi, J., Guo, P.: Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found. 58, 249–263 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Rail Infrastructure Durability and System SafetyTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Road and Traffic Engineering of the Ministry of EducationTongji UniversityShanghaiChina
  3. 3.Department of Civil EngineeringMcMaster UniversityHamiltonCanada
  4. 4.Institute of Geotechnical EngineeringUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations