Advertisement

Granular Matter

, 21:38 | Cite as

Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code

  • Chong Shi
  • Wenkun YangEmail author
  • Junxiong Yang
  • Xiao Chen
Original Paper
  • 119 Downloads

Abstract

From a microscopic perspective, the mechanical behavior of rocks can be well simulated by particle discrete element method. However, the ideal mechanical properties under macroscopic compression and tension conditions of the granular system require not only reasonable micro-parameters but also consider the mineral distribution in rock microstructure. In this study, the internal microstructure of granite was characterized based on digital images. The cellular automata method was used to construct a discrete element model of clustered particles, and a rapid and effective calibration method for rock microscopic parameters was established. Numerical results significantly relate with laboratory test results, and the microscopic mechanical parameters of the rock were rapidly predicted. Clustered discrete element model simulated the macroscopic mechanical behavior of the investigated rock by considering microscopic rock structure while ignoring particle shape. Results showed that bond strength ratio of the filler–matrix in the numerical sample can significantly affect the compressive–tensile strength ratio. Further, the internal mineral proportion and degree of mineral contact damage strongly influenced the macroscopic mechanical behavior of the investigated rock. Results of this study can provide basis for the construction of micro-scaled model and calibration of microscopic parameters for investigation of rock mechanical behavior.

Keywords

Microscopic structure Particle flow code Discrete element method Compressive–tensile strength ratio 

Notes

Acknowledgements

The National Key R&D Program of China (2018YFC1508501), the National Basic Research Program of China (973 Program) (Grant No. 2015CB057903), the National Natural Science Foundation of China (Grants Nos. 41831278, 51679071), and the Natural Science Foundation of Jiangsu Province (Grant No. B BK20171434) supported this work.

Compliance with ethical standards

Conflict of interest

The authors state that this article has no conflict of interest with anybody or any organizations.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Jing, L.: A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 40(3), 283–353 (2003).  https://doi.org/10.1016/s1365-1609(03)00013-3 CrossRefGoogle Scholar
  2. 2.
    Shao, J.F., Rudnicki, J.W.: A microcrack-based continuous damage model for brittle geomaterials. Key Eng. Mater. 32(10), 607–619 (2000)Google Scholar
  3. 3.
    Okui, Y., Horii, H.: A micromechanics-based continuum theory for microcracking localization of rocks under compression. In: Mühlhaus, H., Wiley, W., Ch, N.Y., Lakes R. (eds.) Continuum models for materials with microstructure, pp. 27–68. Wiley, New York (1995) (ISBN-13: 978-9810244125; ISBN-10: 0471950653) zbMATHGoogle Scholar
  4. 4.
    Tang, C., Tang, C.: Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34(2), 249–261 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shen, B., Stephansson, O., Rinne, M.: Modelling Rock Fracturing Processes. Springer, Berlin (2014)CrossRefGoogle Scholar
  6. 6.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geothechnique 29(30), 331–336 (1979)Google Scholar
  7. 7.
    Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008).  https://doi.org/10.1016/j.ces.2008.08.006 CrossRefGoogle Scholar
  8. 8.
    Cundall, P.A., Hart, R.D.: Numerical modelling of discontinua. Eng. Comput. 9(2), 101–113 (1992).  https://doi.org/10.1108/eb023851 CrossRefGoogle Scholar
  9. 9.
    Itasca Consulting Group I, PFC2D-particle flow code in two-dimensions. Itasca Consulting Group I, Minnesota, (2008)Google Scholar
  10. 10.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004).  https://doi.org/10.1016/j.ijrmms.2004.09.011 CrossRefGoogle Scholar
  11. 11.
    Kazerani, T., Zhao, J.: Micromechanical parameters in bonded particle method for modeling of brittle material failure. Int. J. Numer. Anal. Methods Geomech. 34(18), 1877–1895 (2010)CrossRefGoogle Scholar
  12. 12.
    Cho, N., Martin, C.D., Sego, D.C.: Development of a shear zone in brittle rock subjected to direct shear. Int. J. Rock Mech. Min. Sci. 45(8), 1335–1346 (2008).  https://doi.org/10.1016/j.ijrmms.2008.01.019 CrossRefGoogle Scholar
  13. 13.
    Lan, H., Martin, C.D., Hu, B.: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. (2010).  https://doi.org/10.1029/2009jb006496 CrossRefGoogle Scholar
  14. 14.
    Asadi, M.S., Rasouli, V., Barla, G.: A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mech. Rock Eng. (2012).  https://doi.org/10.1007/s00603-012-0231-4 CrossRefGoogle Scholar
  15. 15.
    Munjiza, A., Owen, D.R.J., Bicanic, N.: A combined finite—discrete element method in transient dynamics of fracturing solids. Eng. Comput. 12(2), 145–174 (1995)CrossRefGoogle Scholar
  16. 16.
    Mahabadi, O.K., Lisjak, A., Munjiza, A., Grasselli, G.: Y-Geo: new combined finite-discrete element numerical code for geomechanical applications. Int. J. Geomech. 12(6), 676–688 (2012)CrossRefGoogle Scholar
  17. 17.
    Elmo, D., Stead, D., Eberhardt, E., Vyazmensky, A.: Applications of finite/discrete element modeling to rock engineering problems. Int. J. Geomech. 13(5), 565–580 (2013).  https://doi.org/10.1061/(ASCE)gm.1943-5622.0000238 CrossRefGoogle Scholar
  18. 18.
    Tatone, B.S.A., Grasselli, G.: A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations. Int. J. Rock Mech. Min. Sci. 75, 56–72 (2015).  https://doi.org/10.1016/j.ijrmms.2015.01.011 CrossRefGoogle Scholar
  19. 19.
    Bruno, M.S., Nelson, R.B.: Microstructural analysis of the inelastic behavior of sedimentary rock. Mech. Mater. 12(2), 95–118 (1991)CrossRefGoogle Scholar
  20. 20.
    Hsieh, Y.-M., Li, H.-H., Huang, T.-H., Jeng, F.-S.: Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—Revealed by bonded-particle model. Eng. Geol. 99(1–2), 1–10 (2008).  https://doi.org/10.1016/j.enggeo.2008.01.017 ADSCrossRefGoogle Scholar
  21. 21.
    Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44(6), 871–889 (2007).  https://doi.org/10.1016/j.ijrmms.2007.01.004 CrossRefGoogle Scholar
  22. 22.
    Hanley, K.J., O’Sullivan, C., Oliveira, J.C., Cronin, K., Byrne, E.P.: Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 210(3), 230–240 (2011).  https://doi.org/10.1016/j.powtec.2011.03.023 CrossRefGoogle Scholar
  23. 23.
    Benvenuti, L., Kloss, C., Pirker, S.: Identification of DEM simulation parameters by artificial neural networks and bulk experiments. Powder Technol. 291, 456–465 (2016).  https://doi.org/10.1016/j.powtec.2016.01.003 CrossRefGoogle Scholar
  24. 24.
    Rackl, M., Görnig, C.D., Hanley, K.J., Günthner, W.A.: Efficient calibration of discrete element material model parameters using latin hypercube sampling and kriging. In: Vii european congress on computational methods in applied sciences and engineering (2016)Google Scholar
  25. 25.
    Cho, N., Martin, C.D., Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44(7), 997–1010 (2007).  https://doi.org/10.1016/j.ijrmms.2007.02.002 CrossRefGoogle Scholar
  26. 26.
    Xiao-Ping ZhangLouis Ngai Yuen Wong: Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech. Rock Eng. 45(5), 711–737 (2012)Google Scholar
  27. 27.
    Lee, Heekwang, Jeon, Seokwon: An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 48(6), 979–999 (2011)CrossRefGoogle Scholar
  28. 28.
    Jung-WookPark, Jae-JoonSong: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46(8), 1315–1328 (2009)CrossRefGoogle Scholar
  29. 29.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1975)CrossRefGoogle Scholar
  30. 30.
    Sang, U.L., Chung, S.Y., Park, R.H.: A comparative performance study of several global thresholding techniques for segmentation. Comput. Vis. Graph. Image Process. 52(2), 171–190 (1990)CrossRefGoogle Scholar
  31. 31.
    Ouadfel, S., Meshoul, S.: A fully adaptive and hybrid method for image segmentation using multilevel thresholding. Int. J. Image Graph. Signal Process. 5(1), 46–57 (2013).  https://doi.org/10.5815/ijigsp.2013.01.07 CrossRefGoogle Scholar
  32. 32.
    Huang, D.Y., Lin, T.W., Hu, W.C.: Automatic multilevel thresholding based on two-stage Otsu’s method with cluster determination by valley estimation. Int. J. Innov. Comput. Inform. Control Ijicic 7(10), 5631–5644 (2011)Google Scholar
  33. 33.
    Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognition Lett. 29(2), 119–125 (2008).  https://doi.org/10.1016/j.patrec.2007.09.005 CrossRefGoogle Scholar
  34. 34.
    Chopard, Bastien, Droz, Michel: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  35. 35.
    Potyondy, D.O.: The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosyst. Eng. 18(1), 1–28 (2015).  https://doi.org/10.1080/12269328.2014.998346 CrossRefGoogle Scholar
  36. 36.
    Whittaker, B. N.: Analytical and computational methods in engineering rock mechanics, edited by By E. T. Brown Allen and Unwin, London, 1987, No. of pages: 259. Earthquake Eng. Struct. Dyn. 16, 471 (1988).  https://doi.org/10.1002/eqe.4290160314 CrossRefGoogle Scholar
  37. 37.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions. Wiley Series in Probability41 and Mathematical Statistics: Applied Probability and Statistics, vol. 1, 2nd edn. Wiley, New York (1994). (ISBN 978-0-471-58495-7, MR 1299979) Google Scholar
  38. 38.
    Curry, D., Favier, J., LaRoche, R.D.: A systematic approach to DEM material model calibration [online]. In: Wypych, P. (ed.) 6th international conference for conveying and handling of particulate solids, pp. 51–54. Brisbane Convention & Exhibition Centre, Queensland, Australia; Engineers Australia, Barton, A.C.T., 3–7 August 2009 (ISBN 9780858259065) Google Scholar
  39. 39.
    Rong, G., Liu, G., Hou, D., Zhou, C.B.: Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model. Sci. World J. 2013, 589215 (2013).  https://doi.org/10.1155/2013/589215 CrossRefGoogle Scholar
  40. 40.
    Rong, G., Liu, G., Hou, D., Zhou, C.B.: Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model. Sci. World J. 7, 589215 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Geomechanics and Embankment EngineeringHohai UniversityNanjingChina
  2. 2.Institute of Geotechnical ResearchHohai UniversityNanjingChina

Personalised recommendations