Granular Matter

, 21:12 | Cite as

Discrete element analysis of the particle mixing performance in a ribbon mixer with a double U-shaped vessel

  • Wei GaoEmail author
  • Lei Liu
  • Zechu Liao
  • Shunhua ChenEmail author
  • Mengyan Zang
  • Yuanqiang Tan
Original Paper


In this study, a discrete element method is employed to simulate the mixing process of solid particles in a horizontal ribbon mixer with a double U-shaped vessel. A mixing index, i.e. the so-called Lacey index, is adopted to evaluate the mixing quality of particles. The effects of the operational and geometrical parameters including initial loading, particle size, impeller rotational speed, and inner blades on the mixing quality of particles have been investigated. Results suggest that the initial loading and the impeller rotational speed have significant effects on the mixing quality of particles, while the other two parameters have relatively small effects. Moreover, the effect of each parameter on the mixing quality has been explained by utilizing the relative velocity components between the centroids of particles after collision, and this ribbon mixer provides much more intense relative movements of particles along the vertical direction than the axial and side–side directions. Finally, the mixing performance between the ribbon mixers with respective single and double U-shaped vessels is compared. Results show that the ribbon mixer with a double U-shaped vessel shows better mixing performance under top–bottom and front–back initial loadings, however, worse mixing performance under side–side initial loading.


Particle mixing Ribbon mixer Discrete element method Mixing quality 



This work was supported by the National Natural Science Foundation of China (51878184, 51404209, 11672344 and 11772135) and the Youth Foundation of Education Department of Hunan Province (16B259). In addition, the authors appreciate the anonymous reviewers’ useful suggestions and comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M.: Handbook of Industrial Mixing: Science and Practice. Wiley, New Jersey (2004)Google Scholar
  2. 2.
    Alian, M., Ein-Mozaffari, F., Upreti, S.R., Wu, J.: Using discrete element method to analyze the mixing of the solid particles in a slant cone mixer. Chem. Eng. Res. Des. 93, 318 (2015)CrossRefGoogle Scholar
  3. 3.
    Boonkanokwong, V., Remy, B., Khinast, J.G., Glasser, B.J.: The effect of the number of impeller blades on granular flow in a bladed mixer. Powder Technol. 302, 333 (2016)CrossRefGoogle Scholar
  4. 4.
    Román-Ospino, A.D., Singh, R., Ierapetritou, M., Ramachandran, R., Méndez, R., Ortega-Zuñiga, C., Muzzio, F.J., Romañach, R.J.: Near infrared spectroscopic calibration models for real time monitoring of powder density. Int. J. Pharm. 512(1), 61 (2016)CrossRefGoogle Scholar
  5. 5.
    Basinskas, G., Sakai, M.: Numerical study of the mixing efficiency of a ribbon mixer using the discrete element method. Powder Technol. 287, 380 (2016)CrossRefGoogle Scholar
  6. 6.
    Ren, X., Xu, J., Qi, H., Cui, L., Ge, W., Li, J.: GPU-based discrete element simulation on a tote blender for performance improvement. Powder Technol. 239, 348 (2013)CrossRefGoogle Scholar
  7. 7.
    Pantaleev, S., Yordanova, S., Janda, A., Marigo, M., Ooi, J.Y.: An experimentally validated DEM study of powder mixing in a paddle blade mixer. Powder Technol. 311, 287 (2017)CrossRefGoogle Scholar
  8. 8.
    Manjunath, K., Dhodapkar, S., Jacob, K.: In: Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M. (eds.) Handbook of Industrial Mixing: Science and Practice, pp. 924–986. Wiley, New Jersey (2004)Google Scholar
  9. 9.
    Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728 (2008)CrossRefGoogle Scholar
  10. 10.
    Huang, A.N., Kuo, H.P.: Developments in the tools for the investigation of mixing in particulate systems: a review. Adv. Powder Technol. 25(1), 163 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cundall, P.A.: in Proceedings of the International Symposium on Rock Mechanics, 1971 (Symp ISRM Proc, Nancy, France, 1971), pp. 129–139Google Scholar
  12. 12.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47 (1979)CrossRefGoogle Scholar
  13. 13.
    Cleary, P.W., Sinnott, M.D.: Assessing mixing characteristics of particle-mixing and granulation devices. Particuology 6(6), 419 (2008)CrossRefGoogle Scholar
  14. 14.
    Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S.: Effects of particle size and region width on the mixing and dispersion of pebbles in two-region pebble bed. Granul. Matter 18(4), 76 (2016)CrossRefGoogle Scholar
  15. 15.
    Sarkar, A., Wassgren, C.R.: Effect of particle size on flow and mixing in a bladed granular mixer. AIChE J. 61(1), 46 (2015)CrossRefGoogle Scholar
  16. 16.
    Remy, B., Khinast, J.G., Glasser, B.J.: Discrete element simulation of free flowing grains in a four-bladed mixer. AIChE J. 55(8), 2035 (2009)CrossRefGoogle Scholar
  17. 17.
    Schmelzle, S., Leppert, S., Nirschl, H.: Influence of impeller geometry in a vertical mixer described by DEM simulation and the dispersion model. Adv. Powder Technol. 26(5), 1473 (2015)CrossRefGoogle Scholar
  18. 18.
    Kaneko, Y., Shiojima, T., Horio, M.: Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation. Powder Technol. 108(1), 55 (2000)CrossRefGoogle Scholar
  19. 19.
    Halidan, M., Chandratilleke, G.R., Dong, K., Yu, A.: The effect of interparticle cohesion on powder mixing in a ribbon mixer. AIChE J. 62(4), 1023 (2016)CrossRefGoogle Scholar
  20. 20.
    Bertrand, F., Leclaire, L.A., Levecque, G.: DEM-based models for the mixing of granular materials. Chem. Eng. Sci. 60(8), 2517 (2005)CrossRefGoogle Scholar
  21. 21.
    Cleary, P.W.: Particulate mixing in a plough share mixer using DEM with realistic shaped particles. Powder Technol. 248, 103 (2013)CrossRefGoogle Scholar
  22. 22.
    Alian, M., Ein-Mozaffari, F., Upreti, S.R.: Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM). Powder Technol. 274, 77 (2015)CrossRefGoogle Scholar
  23. 23.
    Li, J., Wassgren, C., Litster, J.D.: Multi-scale modeling of a spray coating process in a paddle mixer/coater: the effect of particle size distribution on particle segregation and coating uniformity. Chem. Eng. Sci. 95, 203 (2013)CrossRefGoogle Scholar
  24. 24.
    Pereira, G., Tran, N., Cleary, P.: Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul. Matter 16(5), 711 (2014)CrossRefGoogle Scholar
  25. 25.
    Sakai, M., Koshizuka, S.: Large-scale discrete element modeling in pneumatic conveying. Chem. Eng. Sci. 64(3), 533 (2009)CrossRefGoogle Scholar
  26. 26.
    Takabatake, K., Mori, Y., Khinast, J.G., Sakai, M.: Numerical investigation of a coarse-grain discrete element method in solid mixing in a spouted bed. Chem. Eng. J. 346, 416 (2018)CrossRefGoogle Scholar
  27. 27.
    Sakai, M., Abe, M., Shigeto, Y., Mizutani, S., Takahashi, H., Viré, A., Percival, J.R., Xiang, J., Pain, C.C.: Verification and validation of a coarse grain model of the dem in a bubbling fluidized bed. Chem. Eng. J. 244, 33 (2014)CrossRefGoogle Scholar
  28. 28.
    Sakai, M.: How should the discrete element method be applied in industrial systems? A review. KONA Powder Particle J. 33, 169 (2016)CrossRefGoogle Scholar
  29. 29.
    Muzzio, F.J., Llusa, M., Goodridge, C.L., Duong, N.H., Shen, E.: Evaluating the mixing performance of a ribbon blender. Powder Technol. 186(3), 247 (2008)CrossRefGoogle Scholar
  30. 30.
    Côté, P., Abatzoglou, N.: Powder and other divided solids mixing. Scale-up and parametric study of a ribbon blender used in pharmaceutical powders mixing. Pharm. Dev. Technol. 11(1), 29 (2006)CrossRefGoogle Scholar
  31. 31.
    Poux, M., Fayolle, P., Bertrand, J., Bridoux, D., Bousquet, J.: Powder mixing: some practical rules applied to agitated systems. Powder Technol. 68(3), 213 (1991)CrossRefGoogle Scholar
  32. 32.
    Xiao, X., Tan, Y., Zhang, H., Jiang, S., Wang, J., Deng, R., Cao, G., Wu, B.: Numerical investigation on the effect of the particle feeding order on the degree of mixing using DEM. Procedia Eng. 102, 1850 (2015)CrossRefGoogle Scholar
  33. 33.
    Tijskens, E., Ramon, H., De Baerdemaeker, J.: Discrete element modelling for process simulation in agriculture. J. Sound Vib. 266(3), 493 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Tanaka, K., Nishida, M., Kunimochi, T., Takagi, T.: Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical projectile. Powder Technol. 124(1–2), 160 (2002)CrossRefGoogle Scholar
  35. 35.
    Feng, Y., Han, K., Owen, D.: Discrete element simulation of the dynamics of high energy planetary ball milling processes. Mater. Sci. Eng. A 375–377, 815 (2004)CrossRefGoogle Scholar
  36. 36.
    Sakai, M., Shigeto, Y., Sun, X., Aoki, T., Saito, T., Xiong, J., Koshizuka, S.: Lagrangian–Lagrangian modeling for a solid–liquid flow in a cylindrical tank. Chem. Eng. J. 200, 663 (2012)CrossRefGoogle Scholar
  37. 37.
    Sun, X., Sakai, M., Sakai, M.T., Yamada, Y.: A Lagrangian–Lagrangian coupled method for three-dimensional solid–liquid flows involving free surfaces in a rotating cylindrical tank. Chem. Eng. J. 246, 122 (2014)CrossRefGoogle Scholar
  38. 38.
    Hertz, H.: On the contact of elastic solids. Journal für die reine und angewandte Mathematik 92, 156 (1881)zbMATHGoogle Scholar
  39. 39.
    Mindlin, R.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259 (1949)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Mindlin, R.D., Deresiewica, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327 (1953)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239 (1992)CrossRefGoogle Scholar
  42. 42.
    Sakaguchi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 7(09n10), 1949 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    Gao, W., Tan, Y., Jiang, S., Zhang, G., Zang, M.: A virtual-surface contact algorithm for the interaction between FE and spherical DE. Finite Elem. Anal. Des. 108, 32 (2016)CrossRefGoogle Scholar
  44. 44.
    Zheng, Z., Zang, M., Chen, S., Zhao, C.: An improved 3D DEM–FEM contact detection algorithm for the interaction simulations between particles and structures. Powder Technol. 305, 308 (2017)CrossRefGoogle Scholar
  45. 45.
    Gao, W., Zang, M.: The simulation of laminated glass beam impact problem by developing fracture model of spherical DEM. Eng. Anal. Bound. Elem. 42, 2 (2014)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zang, M., Gao, W., Lei, Z.: A contact algorithm for 3D discrete and finite element contact problems based on penalty function method. Comput. Mech. 48(5), 541 (2011)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Fan, L.T.: In: Levy, A., Kalman, H. (eds.) Handbook of Conveying and Handling of Particulate Solids, pp. 647–658. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  48. 48.
    Fan, L.T., Wang, R.H.: On mixing indices. Powder Technol. 11(1), 27 (1975)CrossRefGoogle Scholar
  49. 49.
    Chandratilleke, G.R., Yu, A.B., Bridgwater, J., Shinohara, K.: A particle-scale index in the quantification of mixing of particles. AIChE J. 58(4), 1099 (2012)CrossRefGoogle Scholar
  50. 50.
    Chou, S.H., Song, Y.L., Hsiau, S.S.: A study of the mixing index in solid particles. KONA Powder Particle J. 34, 275 (2017)CrossRefGoogle Scholar
  51. 51.
    Barrios, G.K., de Carvalho, R.M., Kwade, A., Tavares, L.M.: Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 248, 84 (2013)CrossRefGoogle Scholar
  52. 52.
    Soni, R.K., Mohanty, R., Mohanty, S., Mishra, B.: Numerical analysis of mixing of particles in drum mixers using DEM. Adv. Powder Technol. 27(2), 531 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electro-mechanical EngineeringGuangdong University of TechnologyGuangzhouChina
  2. 2.School of Mechanical EngineeringXiangtan UniversityXiangtanChina
  3. 3.Department of Systems InnovationThe University of TokyoTokyoJapan
  4. 4.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  5. 5.Institute of Manufacturing EngineeringHuaqiao UniversityXiamenChina

Personalised recommendations