Advertisement

Granular Matter

, 18:30 | Cite as

Effect of size distribution on mixing of a polydisperse wet granular material in a belt-driven enclosure

  • Pallab Sinha MahapatraEmail author
  • Sam Mathew
  • Mahesh V. Panchagnula
  • Srikanth Vedantam
Original Paper

Abstract

We use a recently developed coupled fluid–particle discrete element model to study mixing of a wet granular material in a two dimensional setting. The particles are modeled as linearly elastic disks and are considered to be immersed in a Newtonian fluid. The fluid–particle interaction is modeled using a linear drag model under the assumption that the fluid inertia is small compared to particle inertia. The granular slurry is driven by a belt moving at constant velocity in a square cavity. In the simulations, we consider three types of size distributions: monodisperse, bidisperse with several particle size ratios, and polydisperse Gaussian distributions with several different standard deviations. Mixing is characterized using both strong and weak measures. Size segregation is observed only in the bidisperse simulations. The energy required for mixing polydisperse slurries decreases with increasing standard deviation of the particle sizes. Finally, we show the benefits of engineering certain polydisperse particle size distributions towards minimizing energy consumption.

Keywords

Wet granular mixing Polydisperse flow  Belt driven enclosure 

Notes

Acknowledgments

The computational resources in the High Performance Cluster was provided by the Indian Institute of Technology Madras. The data in this study was not presented earlier.

Supplementary material

Supplementary material 1 (mp4 36054 KB)

Supplementary material 2 (mp4 25828 KB)

References

  1. 1.
    Benito, J.G., Vidales, A.M.: Novel aspects on the segregation in quasi 2D piles. Powder Technol. 234, 123–131 (2013)CrossRefGoogle Scholar
  2. 2.
    Gray, J.M.N.T., Ancey, C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Remy, B., Khinast, J.G., Glasser, B.J.: Polydisperse granular flows in a bladed mixer: experiments and simulations of cohesionless spheres. Chem. Eng. Sci. 66(9), 1811–1824 (2011)CrossRefGoogle Scholar
  4. 4.
    Chandratilleke, G.R., Yu, A.B., Bridgwater, J.: A DEM study of the mixing of particles induced by a flat blade. Chem. Eng. Sci. 79, 54–74 (2012)CrossRefGoogle Scholar
  5. 5.
    Dube, O., Alizadeh, E., Chaouki, J., Bertrand, F.: Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci. 101, 486–502 (2013)CrossRefGoogle Scholar
  6. 6.
    Devriendt, L., Gatumel, C., Berthiaux, H.: Experimental evidence of mixture segregation by particle size distribution. Part. Sci. Technol. 31(6), 653–657 (2013)CrossRefGoogle Scholar
  7. 7.
    Nguyen, D., Rasmuson, A., Björn, I.N., Thalberg, K.: CFD simulation of transient particle mixing in a high shear mixer. Powder Technol. 258, 324–330 (2014)CrossRefGoogle Scholar
  8. 8.
    Arntz, M.M.H.D., Beeftink, H.H., Otter, W.K., Briels, W.J., Boom, R.M.: Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE J. 60(1), 50–59 (2014)CrossRefGoogle Scholar
  9. 9.
    Collet, R., Oulahna, D., De Ryck, A., Jezequel, P.H., Martin, M.: Mixing of a wet granular medium: influence of the liquid addition method. Powder Technol. 208(2), 367–371 (2011)CrossRefGoogle Scholar
  10. 10.
    Kudrolli, A.: Granular matter: sticky sand. Nat. Mater. 7(3), 174–175 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Hsiau, S.S., Liao, C.C., Tai, C.H., Wang, C.Y.: The dynamics of wet granular matter under a vertical vibration bed. Granul. Matter 15(4), 437–446 (2013)CrossRefGoogle Scholar
  12. 12.
    Samiei, K., Peters, B.: Experimental and numerical investigation into the residence time distribution of granular particles on forward and reverse acting grates. Chem. Eng. Sci. 87, 234–245 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, P.Y., Yang, R.Y., Yu, A.B.: Self-diffusion of wet particles in rotating drums. Phys. Fluids 25(6), 063301 (2013). (1994-present)Google Scholar
  14. 14.
    Pereira, G.G., Cleary, P.W.: Radial segregation of multi-component granular media in a rotating tumbler. Granul. Matter 15(6), 705–724 (2013)CrossRefGoogle Scholar
  15. 15.
    Darelius, A., Remmelgas, J., Rasmuson, A., van Wachem, B., Björn, I.N.: Fluid dynamics simulation of the high shear mixing process. Chem. Eng. J. 164(23), 418–424 (2010). (Pharmaceutical Granulation and Processing)CrossRefGoogle Scholar
  16. 16.
    Liu, P.Y., Yang, R.Y., Yu, A.B.: Dynamics of wet particles in rotating drums: effect of liquid surface tension. Phys. Fluids 23(1), 013304 (2011)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)CrossRefGoogle Scholar
  18. 18.
    Tsorng, S.J., Capart, H., Lo, D.C., Lai, J.S., Young, D.L.: Behaviour of macroscopic rigid spheres in lid-driven cavity flow. Int. J. Multiph. Flow 34(1), 76–101 (2008)CrossRefGoogle Scholar
  19. 19.
    Bonkinpillewar, P.D., Kulkarni, A., Panchagnula, M.V., Vedantam, S.: A novel coupled fluid particle DEM for simulating dense granular slurry dynamics. Granul. Matter 17(4), 511–521 (2015)CrossRefGoogle Scholar
  20. 20.
    Rodríguez, D., Benito, J.G., Ippolito, I., Hulin, J.P., Vidales, A.M., Uñac, R.O.: Dynamical effects in the segregation of granular mixtures in quasi 2d piles. Powder Technol. 269, 101–109 (2015)CrossRefGoogle Scholar
  21. 21.
    Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1), 63–82 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Leonardi, A., Cabrera, M., Wittel, F.K., Kaitna, R., Mendoza, M., Wu, W., Herrmann, H.J.: Granular-front formation in free-surface flow of concentrated suspensions. Phys. Rev. E 92, 052204 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Yin, H., Zhang, M., Liu, H.: Numerical simulation of three-dimensional unsteady granular flows in rotary kiln. Powder Technol. 253, 138–145 (2014)CrossRefGoogle Scholar
  24. 24.
    Juarez, G., Christov, I.C., Ottino, J.M., Lueptow, R.M.: Mixing by cutting and shuffling 3D granular flow in spherical tumblers. Chem. Eng. Sci. 73, 195–207 (2012)CrossRefGoogle Scholar
  25. 25.
    Jain, A., Metzger, M.J., Glasser, B.J.: Effect of particle size distribution on segregation in vibrated systems. Powder Technol. 237, 543–553 (2013)CrossRefGoogle Scholar
  26. 26.
    Qingqing, Y., Zhiman, S., Fei, C., Keizo, U.: Enhanced mobility of polydisperse granular flows in a small flume. Geoenviron. Disasters 2(1), 1–9 (2015)CrossRefGoogle Scholar
  27. 27.
    Jop, P.: Rheological properties of dense granular flows. C.R. Phys. 16(1), 62–72 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul. Matter 2(3), 123–135 (2000)CrossRefGoogle Scholar
  29. 29.
    Drumm, C., Tiwari, S., Kuhnert, J., Bart, H.: Finite pointset method for simulation of the liquid-liquid flow field in an extractor. Comput. Chem. Eng. 32(12), 2946–2957 (2008)CrossRefGoogle Scholar
  30. 30.
    Bonkinpillewar, P.D., Vedantam, S., Panchagnula, M.V.: Flow of wet granular material in a lid driven cavity. In: Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics. Massachusetts Institute of Technology, USA (2013)Google Scholar
  31. 31.
    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)Google Scholar
  32. 32.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Doucet, J., Bertrand, F., Chaouki, J.: A measure of mixing from lagrangian tracking and its application to granular and fluid flow systems. Chem. Eng. Res. Des. 86(12), 1313–1321 (2008)CrossRefGoogle Scholar
  34. 34.
    Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176(1), 250 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041307 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pallab Sinha Mahapatra
    • 1
    • 2
    Email author
  • Sam Mathew
    • 1
  • Mahesh V. Panchagnula
    • 1
  • Srikanth Vedantam
    • 3
  1. 1.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Engineering DesignIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations