An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code

  • 537 Accesses

  • 63 Citations


We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles’ surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. 1

    Yano H. et al.: Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science 312, 1350–1353 (2006)

  2. 2

    Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P.: The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005)

  3. 3

    Richardson D.C., Walsh K.J., Murdoch N., Michel P.: Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427–437 (2011)

  4. 4

    Mehta A.J.: Granular Physics. Cambridge University Press, New York (2007)

  5. 5

    Cleary P.W., Sawley M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89–111 (2002)

  6. 6

    Kacianauskas R., Maknickas A., Kaceniauskas A., Markauskas D., Balevicius R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41, 52–63 (2010)

  7. 7

    Elaskar S.A., Godoy L.A., Gray D.D., Stiles J.M.: A viscoplastic approach to model the flow of granular solids. Int. J. Solids Struct. 37, 2185–2214 (2000)

  8. 8

    Holsapple K.A.: Equilibrium figures of spinning bodies with self-gravity. Icarus 172, 272–303 (2004)

  9. 9

    Holsapple K.A., Michel P.: Tidal disruptions. II. A continuum theory for solid bodies with strength, with applications to the solar system. Icarus 193, 283–301 (2008)

  10. 10

    Sharma I., Jenkins J.T., Burns J.A.: Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus 200, 304–322 (2009)

  11. 11

    Wada K., Senshu H., Matsui T.: Numerical simulation of impact cratering on granular material. Icarus 180, 528–545 (2006)

  12. 12

    Hong D.C., McLennan J.A.: Molecular dynamics simulations of hard sphere granular particles. Phys. A 187, 159–171 (1992)

  13. 13

    Huilin L., Yunhua Z., Ding J., Gidaspow D., Wei L.: Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds. Chem. Eng. Sci. 62, 301–317 (2007)

  14. 14

    Kosinski P., Hoffmann A.C.: Extension of the hard-sphere particle-wall collision model to account for particle deposition. Phys. Rev. E 79, 061302 (2009)

  15. 15

    Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

  16. 16

    Sànchez P., Scheeres D.J.: Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. ApJ 727, 120 (2011)

  17. 17

    Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular physics in low-gravity environments using DEM. MNRAS 420, 3368–3380 (2012)

  18. 18

    Gallas J.A.C., Hermann H.J., Pöschel T., Sokolowski S.: Molecular dynamics simulation of size segregation in three dimensions. J. Stat. Phys. 82, 443–450 (1996)

  19. 19

    Silbert L.E., Ertaş D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)

  20. 20

    Stadel J.: Cosmological N-body simulations and their analysis, pp. 126. University of Washington, Washington, DC (2001)

  21. 21

    Richardson D.C., Quinn T., Stadel J., Lake G.: Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143, 45–59 (2000)

  22. 22

    Richardson D.C., Michel P., Walsh K.J., Flynn K.W.: Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet. Space Sci. 57, 183–192 (2009)

  23. 23

    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

  24. 24

    Saha P., Tremaine S.: Symplectic integrators for solar system dynamics. Astron. J. 104, 1633–1640 (1992)

  25. 25

    Quinn T., Perrine R.P., Richardson D.C., Barnes R.: A Symplectic integrator for Hill’s equations. ApJ 139, 803–807 (2010)

  26. 26

    Cleary P.W.: Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Min. Eng. 11, 1061–1080 (1998)

  27. 27

    Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)

  28. 28

    Kahn K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A 352, 522–524 (2005)

  29. 29

    Zhu H.P., Yu A.B.: A theoretical analysis of the force models in discrete element method. Powder Technol. 161, 122–129 (2006)

  30. 30

    Nedderman R.M., Tüzün U., Savage S.B., Houlsby G.T.: The flow of granular materials–I: discharge rates from Hoppers. Chem. Eng. Sci. 37, 1597–1609 (1982)

  31. 31

    Bertrand F., Leclaire L.-A., Levecque G.: DEM-based models for the mixing of granular materials. Chem. Eng. Sci. 60, 2517–2531 (2005)

  32. 32

    Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)

  33. 33

    Janssen H.A.: Versuche über Getreidedruck in Silozellen. Ver. dt. Ing. 39, 1045–1049 (1895)

  34. 34

    Shaxby J.H., Evans J.C.: The variation of pressure with depth in columns of powders. Trans. Faraday Soc. 19, 60–72 (1923)

  35. 35

    Rose H.E., Tanaka T.: Rate of discharge of granular materials from bins and hoppers. Engineer 208, 465–469 (1959)

  36. 36

    Hofmeister, P., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. In: Nakagawa M., Luding S. (eds.) Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media, Hrsg. AIP Conference Proceedings vol. 1145, pp. 71–74 (2009)

Download references

Author information

Correspondence to Stephen R. Schwartz.

Electronic supplementary material

ESM1 (MPG 136,306 kb)

ESM2 (MPG 140,280 kb)

ESM1 (MPG 136,306 kb)

ESM2 (MPG 140,280 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwartz, S.R., Richardson, D.C. & Michel, P. An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granular Matter 14, 363–380 (2012).

Download citation


  • Bulk solids
  • Solar system
  • DEM
  • Hopper