Advertisement

Granular Matter

, 11:379 | Cite as

Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads

  • Pablo CuéllarEmail author
  • Matthias Baeßler
  • Werner Rücker
Article

Abstract

Sand densification around the pile has traditionally been regarded as an explanation for the grain migration and soil subsidence that often occur around cyclic laterally loaded piles embedded in sand. Supported by new empirical evidence, this paper proposes that, additionally to some soil densification around the pile, the main cause for the continuous “steady-state” grain migration is a convective cell flow of sand grains in the vicinities of the pile head. Such convective flow would be caused by a ratcheting mechanism triggered by the cyclic low-frequency lateral displacements of the pile. Furthermore, the experimental results suggest that the limit between the convective cell and the static soil is marked by a distinct direct shear surface. This might shed some light into the complex phenomena related to the pile-soil interaction in the upper layers of the bedding, which are normally the main contributor for the lateral load-bearing capacity of piles.

Keywords

Grain migration Pile foundation Cyclic lateral load Ratcheting Convection Densification 

Supplementary material

ESM (MOV 11,592 kb)

ESM (MOV 9,572 kb)

ESM (MOV 10,038 kb)

ESM (MOV 12,218 kb)

ESM (MOV 11,817 kb)

References

  1. 1.
    Byrne B.W., Houlsby G.T.: Foundations for offshore wind turbines. Philos. Trans. Royal Soc. A 361(1813), 2909–2930 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Lesny K.: Gründung von Offshore-Windenergieanlagen—Entscheidungshilfen für Entwurf und Bemessung. Bautechnik 85(8), 503–511 (2008)CrossRefGoogle Scholar
  3. 3.
    Achmus M., Abdel-Rahman K., Kuo Y.-S.: Design of monopile foundations for offshore wind energy converters. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 463–470. Gdansk, Poland (2008)Google Scholar
  4. 4.
    API.: RP-2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms—working stress design, (x) 21st edn, Dec. 2000; Errata&Supplement 1, Dec. 2002; Errata&Supplement 2, Sept. 2005; Errata&Supplement 3, Dec. 2007), American Petroleum Institute (2007)Google Scholar
  5. 5.
    Germanischer Lloyd: Guideline for the certification of offshore wind turbines. Germanischer Lloyd Windenergie GmbH (2005)Google Scholar
  6. 6.
    ISO.: ISO 19902:2007: Petroleum and natural gas industries—Fixed steel offshore structures. ISO, international organization for standardization (2007)Google Scholar
  7. 7.
    ISET.: RAVE-Research at alpha ventus. The research initiative at the first German offshore wind farm. ISET, Institut für Solare Energieversorgunstechnik, Kassel (2008)Google Scholar
  8. 8.
    Grabe, J.: Pile foundations for nearshore and offshore structures. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 445–462. Gdansk, Poland (2008)Google Scholar
  9. 9.
    Savidis S., Rackwitz F., Tasan H.E.: 1g-Modellversuche mit zyklisch horizontal belasteten Einzelpfählen im wassergesättigten Sand. In: Stahlmann, J. (eds) Pfahl-Symposium 2007, pp. 115–130. Braunschweig, Germany (2007)Google Scholar
  10. 10.
    Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Predictions of long-term deformations for monopile foundations of offshore wind power plants. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 785-792. Gdansk, Poland (2008)Google Scholar
  11. 11.
    Stahlmann, J., Kluge, K., Gattermann, J.: Theoretische und experimentelle Erkenntnisse zur Bodenverflüssigung bei Offshore-Windenergieanlagen. HTG-Kongress 2005 in Bremen, Germany, Hafenbautechnische Gesellschaft e.V., pp. 265–274 (2005)Google Scholar
  12. 12.
    Cheang, L., Matlock, H.: Static and cyclic lateral load tests on instrumented piles in sand. The Earth Technology Corporation, Long Beach, California (1983)Google Scholar
  13. 13.
    Brown D.A., Morrison C., Reese L.C.: Lateral load behavior of pile group in sand. J. Geotech. Eng. 114(11), 1261–1276 (1988)CrossRefGoogle Scholar
  14. 14.
    Savidis S., Rackwitz F., Richter T., Röhner J., Schneider N.: Verhalten von Pfählen in wassergesättigten Sanden unter zyklischen Horizontallasten. Bauingenieur 79, 383–385 (2004)Google Scholar
  15. 15.
    Grabe J., Dührkop J., Mahutka K.-P.: Monopilegründungen von Offshore-Windenergieanlagen. Zur Bildung von Porenwasserüberdrücken aus zyklischer Belastung. Bauingenieur 79, 418–423 (2004)Google Scholar
  16. 16.
    Achmus M., Kuo Y.-S., Abdel-Rahman K.: Behaviour of monopile foundations under cyclic lateral load. Comput. Geotech. 36, 725–735 (2009)CrossRefGoogle Scholar
  17. 17.
    Bentley K.J., El Naggar M.H.: Numerical analysis of kinematic response of single piles. Can. Geotech. J. 37, 1368–1382 (2000)CrossRefGoogle Scholar
  18. 18.
    Taiebat, H.A.: Three dimensional liquefaction analysis of offshore foundations. Ph.D Thesis, University of Sidney (1999)Google Scholar
  19. 19.
    Bolton M.D.: The strength and dilatancy of sands. Géotechnique 36(1), 65–78 (1986)CrossRefGoogle Scholar
  20. 20.
    Gudehus, G.: Nichtlineare Bodendynamik in der Geotechnik. Baugrundtagung 2000, Hannover, VGE Verlag GmbH, Essen, pp. 263-270 (2000)Google Scholar
  21. 21.
    Triantafyllidis T.: Bodenverflüssigung infolge zyklischer Belastung. GEOLEX 2(2), 5–20 (2003)Google Scholar
  22. 22.
    Randolph M.F.: Science and empiricism in pile foundation design. Géotechnique 53(10), 847–875 (2003)Google Scholar
  23. 23.
    White D.J., Bolton M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Géotechnique 54(6), 375–397 (2004)CrossRefGoogle Scholar
  24. 24.
    Lobo-Guerrero S., Vallejo L.E.: Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granul. Matter 9, 241–250 (2007)CrossRefGoogle Scholar
  25. 25.
    Lobo-Guerrero S., Vallejo L.E.: DEM analysis of crushing around driven piles in granular materials. Géotechnique 55(8), 617–623 (2005)CrossRefGoogle Scholar
  26. 26.
    Pöschel T., Saluena C., Schwager T.: Can we scale granular systems?. In: Kishino, Y. (eds) Powders & Grains’2001, pp. 439–442. Rotterdam, Balkema (2001)Google Scholar
  27. 27.
    Walz, B.: Der 1g-Modellversuch in der Bodenmechanik-Verfahren und Anwendung. Vortrag zum 2. Hans Lorenz Symposium, Grundbauinstitut der Technische Universität Berlin, pp. 13–26 (2006)Google Scholar
  28. 28.
    Holzlöhner, U.: Modellversuchstechnik. Symposium Messtechnik im Erd- und Grundbau, Deutsche Gesellschaft für Erd- und Grundbau e.V., Essen, pp. 119–126 (1983)Google Scholar
  29. 29.
    Altaee A., Fellenius B.H.: Physical modeling in sand. Can. Geotech. J. 31, 420–431 (1994)CrossRefGoogle Scholar
  30. 30.
    ASTM.: ASTM D 698:2007e1: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International (2007)Google Scholar
  31. 31.
    Achmus M., Abdel-Rahman K., Peralta P.: Untersuchungen zum Tragverhalten von Monopiles für die Gründung von Offshore-Windenergieanlagen. In: Stahlmann, J. (eds) Pfahl-Symposium, pp. 137–158. Braunschweig, Germany (2005)Google Scholar
  32. 32.
    Hettler, A.: Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (1981)Google Scholar
  33. 33.
    Bobryakov A.P., Kosykh V.P., Revuzhenko A.F.: Temporary structures during the deformation of granular media. (Translation from) Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, vol 2, pp. 29–39. Mining Institute, Siberian Branch, Academy of Sciences of the USSR (1990)Google Scholar
  34. 34.
    Faraday M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. Royal Soc. London 121, 299–340 (1831)CrossRefGoogle Scholar
  35. 35.
    Kutzner, C.: Über die Vorgänge in körnigen Schüttungen bei der Rüttelverdichtung. PhD thesis, Technische Hochschule Karlsruhe (1962)Google Scholar
  36. 36.
    Gallas J.A.C., Herrmann H.J., Sokolowski S.: Convection cells in vibrating granular media. Phys. Rev. Lett. 69(9), 1371–1374 (1992)CrossRefADSGoogle Scholar
  37. 37.
    Herrmann H.J.: Physics of granular media. Chaos, Solitons and Fractals, pp. 203-212. Elsevier Science (1995)Google Scholar
  38. 38.
    Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)CrossRefADSGoogle Scholar
  39. 39.
    Knight J.B., Ehrichs E.E., Kuperman V.Y., Flint J.K., Jaeger H.M., Nagel S.R.: Experimental study of granular convection. Phys. Rev. E 54(5), 5726–5738 (1996)CrossRefADSGoogle Scholar
  40. 40.
    Ehrichs E.E., Flint J.K., Jaeger H.M., Knight J.B., Nagel S.R., Karczmar G.S., Kuperman V.Y.: Convection in vertically vibrated granular materials. Philos. Trans. Royal Soc. A 356, 2561–2567 (1998)CrossRefADSGoogle Scholar
  41. 41.
    Festag, G.: Experimentelle und numerische Untersuchungen zum Verhalten von granularen Materialien unter zyklischer Beanspruchung. Technische Universität Darmstadt (2003)Google Scholar
  42. 42.
    Gudehus, G.: Ratcheting und DIN 1054. 10. Darmstädter Geotechnik-Kolloquium, pp. 159–172 (2003)Google Scholar
  43. 43.
    McNamara, S., García-Rojo, R., Herrmann, H.J.: Microscopic origin of granular ratcheting. Phys. Rev. E, 77 (2008)Google Scholar
  44. 44.
    García-Rojo, R., McNamara, S., Herrmann, H.J.: Discrete element methods for the micro-mechnical investigation of granular ratcheting. Proceedings of the ECCOMAS (2004)Google Scholar
  45. 45.
    Alonso-Marroquin, F., Herrmann, H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92(5) (2004)Google Scholar
  46. 46.
    Alonso-Marroquin, F.: Micromechanical investigation of soil deformation: incremental response and granular ratcheting. Universität Stuttgart (2004)Google Scholar
  47. 47.
    Alonso-Marroquin F., Mühlhaus H.B., Herrmann H.J.: Micromechanical investigation of soil plasticity using a discrete model of polygonal particles. Theor. Appl. Mech. 35, 11–28 (2008)zbMATHCrossRefGoogle Scholar
  48. 48.
    Grabe J., Mahutka K.-P., Dührkop J.: Monopilegründungen von Offshore-Windenergieanlagen—Zum Ansatz der Bettung. Bautechnik 82(1), 1–10 (2005)CrossRefGoogle Scholar
  49. 49.
    Alizadeh M., Davisson M.T.: Lateral load tests on piles—Arkansas River project. J. Soil Mech. Found. Div. 96(5), 1583–1604 (1970)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pablo Cuéllar
    • 1
    Email author
  • Matthias Baeßler
    • 1
  • Werner Rücker
    • 1
  1. 1.BAM, Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing), Division VII.2 “Buildings and Structures”BerlinGermany

Personalised recommendations