Advertisement

Lettera Matematica Pristem

, Volume 107, Issue 1, pp 61–69 | Cite as

Cantor E L’infinito

  • Giorgio VenturiEmail author
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [B1]
    Boolos G., “The iterative conception of set”, Journal of Philosophy, 68(8), pp. 215–231, 1971.CrossRefGoogle Scholar
  2. [B2]
    Cantor G., “Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen”, Journal für die reine und angewandte Mathematik, 77, pp. 258–262, 1874. Trad. inglese: “On a property of the 1set of real algebraic numbers”, in W. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 839–842, 2008.zbMATHGoogle Scholar
  3. [B3]
    Cantor G., “Ein Beitrag zur Mannigfaltigkeitslehre”, Journal für die reine und angewandte Mathematik, 84, pp. 242–258, 1878.CrossRefzbMATHGoogle Scholar
  4. [B4]
    Cantor G., “Über unendliche, lineare Punktmannigfaltigkeiten”, Mathematische Annalen, 17, pp. 355–358, 1880.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [B5]
    Cantor G., Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematich–philosophischer Versuch in der Lehre des Unendichen, Teubner, 1883. Trad. inglese, Foundations of a general theory of manifolds: a mathematico–philosophical investigation into the theory of the infinite, in W. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 878–919, 2008.Google Scholar
  6. [B6]
    Clegg B., A brief history of infinity. The Quest to Think the Unthinkable, Constable & Robinson, 2003.Google Scholar
  7. [B7]
    Coope U., “Aristotle on the Infinite”, in C. Shields (ed.), The Oxford Handbook of Aristotle, Oxford University Press, 2012.Google Scholar
  8. [B8]
    Dedekind R., Was sind und was sollen die Zahlen?, Vieweg, 1888. Trad. inglese: Was sind und was sollen die Zahlen?, in W. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 787–832, 2008.Google Scholar
  9. [B9]
    Ferreirós J., Labyrinth of thought. A history of set theory and its role in modern mathematics, Birkhäuser, 1999.zbMATHGoogle Scholar
  10. [B10]
    Frege G., The Foundations of Arithmetic: A Logico–Mathematical Enquiry into the Concept of Numbers, Blackwell, 1950.zbMATHGoogle Scholar
  11. [B11]
    Frege G., Philosophical and mathematical correspondence, Basil Blackwell, 1980.zbMATHGoogle Scholar
  12. [B12]
    Graham L. and Kantor J., Naming Infinity, Harvard University Press, 2009.zbMATHGoogle Scholar
  13. [B13]
    Hallett M., Cantorian Set Theory and Limitation of Size, Clarendon Press, 1984.zbMATHGoogle Scholar
  14. [B14]
    Hintikka J., “Aristotelian infinity”, Philosophical Review, 75, pp. 197–12, 1966.CrossRefGoogle Scholar
  15. [B15]
    Koellner P., “On reflection principles”, Annals of Pure and Applied Logic, 157(2)(4), pp. 206–219, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [B16]
    Lear J., “Aristotelian infinity”, Proceedings of the Aristotelian Society, 80, pp. 187–210, 1981.CrossRefGoogle Scholar
  17. [B17]
    Maddy P., Defending the Axioms: On the Philosophical Foundations of Set Theory, Oxford University Press, 2011.CrossRefzbMATHGoogle Scholar
  18. [B18]
    P. Maddy, Naturalism in mathematics, Clarendon Press, 1997.zbMATHGoogle Scholar
  19. [B19]
    Maor E., To Infinity and Beyond. A Cultural History of the Infinite, Princeton University Press, 1987.zbMATHGoogle Scholar
  20. [B20]
    Martin D., “Borel determinacy”, Annals of Mathematics, 102, pp. 363–371, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [B21]
    Foster Wallace D., Everything and more: a compact history of infinity, W.W. Norton & Company, 2003.zbMATHGoogle Scholar
  22. [B22]
    Woodin H., “The realm of the infinite”, in Infinity. New research frontiers, Cambridge University Press, pp. 89–118, 2011.CrossRefGoogle Scholar
  23. [B23]
    Zermelo E., “Beweis, daßjede Menge wohlgeordnet werden kann”, Mathematische Annalen, 59, pp. 514–516, 1904. Trad. inglese: “Proof that every set can be wellordered”, in J. van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 139–141, 1967.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [B24]
    Zermelo E., “Untersuchungen über die Grundlagen der Mengenlehre I”, Mathematische Annalen, 65, pp. 261–281, 1908; trad. ingl.: “Investigations in the foundations of set theory I”, in J. van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, 1967.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Egea S.p.a. 2018

Authors and Affiliations

  1. 1.Università di CampinasCampinasBrazil

Personalised recommendations